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Abstract

We explore an objective, frequentist-related interpre-
tation for a set of measures M such as would deter-
mine upper and lower envelopes; M also specifies the
classical frequentist concept of a compound hypothe-
sis. However, in contrast to the compound hypothesis
case, in which there is a true measure µθ0 ∈ M that
is assumed either unknown or random selected, we do
not believe that any single measure is the true descrip-
tion for the random phenomena in question. Rather,
it is the whole set M, itself, that is the appropriate
imprecise probabilistic description. Envelope models
have hitherto been used almost exclusively in subjec-
tive settings to model the uncertainty or strength of
belief of individuals or groups. Our interest in these
imprecise probability representations is as mathemat-
ical models for those objective frequentist phenomena
of engineering and scientific significance where what
is known may be substantial, but relative frequencies,
nonetheless, lack (statistical) stability.

A full probabilistic methodology needs not only an ap-
propriate mathematical probability concept, enriched
by such notions as expectation and conditioning, but
also an interpretive component to identify data that
is typical of the model and an estimation component
to enable inference to the model from data and back-
ground knowledge. Our starting point is this first task
of determining typicality. Kolmogorov complexity is
used as the key non-probabilistic idea to enable us to
create simulation data from an envelope model in an
attempt to identify “typical” sequences. First steps in
finite sequence frequentist modeling will also be taken
towards inference of the set M from finite frequentist
data and then applied to data on vowel production
from an Internet message source.
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1 Motivating Viewpoint

A sound enterprise of imprecise probability absolutely
requires an interpretation. Jacob Bernoulli’s years-
long struggle to interpret probability and Bruno de
Finetti’s struggles to develop and gain acceptance for
a subjective interpretation both attest to the impor-
tance and difficulty of establishing an interpretation.
Focus on mathematical formal development, while of
value in providing deep enlightenment, also can se-
duce and distract us—difficult as mathematics can
be, it poses more familiar challenges than those of
probabilistic reasoning and interpretation.

A paradigm of new departures in, say, applied mathe-
matics is to find an anomalous physical phenomenon,
study it, and then model it by a new mathematical
approach and/or concept. However, in fact, much of
our ability to recognize anomalous phenomena is con-
ditioned by our mathematical constructs. In some
sense we are only likely to find what we expect to
see. A telling instance of this is provided by the 20th
Century history of the count of human chromosome
pairs— an insistence on their being 24 pairs long af-
ter there were photographs and experiments clearly
showing only 23 pairs (see Ridley [9]). New concepts
of probability are needed to open our intuition to new
perceptions of phenomena.

Where there is merit in subjective interpretations, in
concepts of degrees of belief, there is a physical reality
independent of our individual thoughts. We deny the
everyday practices of science and engineering at our
peril. There is logical room for intrinsically imprecise
physical phenomena, imprecise in that the underly-
ing empirical relational systems are not homomorphic
to mathematical relations on the real numbers (see
Krantz et al. [6] for this viewpoint). The notion of
physical phenomena sharing the precision of the real
number system is so well-entrenched that identifica-
tions of imprecise phenomena are difficult to make
and hard to defend.



Our strategy has been to work backwards. First, we
introduce a new way of “seeing” by adopting descrip-
tion by the mathematical concept of envelopes famil-
iar to many. Second, we ask what kind of mathe-
matical data (not necessarily generated by any known
physical phenomenon) could lead us to model it by
envelopes? How could envelopes display themselves
in the data, under ideal circumstances. Third, we
attempt to close the circle of probabilistic modeling
by proposing inference from such data sets to enve-
lope models. We then are faced with self-consistency
questions that are analogous to the laws of large num-
bers and goodness-of-fit tests. Our understanding of
these issues is in its infancy. Fourth, and finally, we
study the empirical phenomenon of vowel generation
to see if it provides a real-world example of an impre-
cise probabilistic phenomenon.

2 Sets of Measures and Envelopes

Our long-term interest in objective frequentist inter-
pretations for upper and lower probabilities has led
us, through a series of papers, to conclude (e.g., see
Papamarcou and Fine [8], Sadrolhefazi and Fine [10])
that such models could only be stationary if we used
undominated lower probabilities. Furthermore, this
prior research was concerned primarily with asymp-
totic considerations (but see [10]) in an attempt to iso-
late behavior that could not be encompassed by stan-
dard numerical probability. The somewhat patholog-
ical nature of undominated lower probability has led
us to consider the more tractable concept of upper
and lower envelopes. Prior frequentist attempts to
deal with upper and lower envelopes include Cozman
and Chrisman [2] and Walley and Fine [12], although
these kindred researches were focused on asymptotic
considerations. Our approach relates more closely to
that of Walley and Fine in that we focus on the se-
quence of relative frequencies and not, as do Cozman
and Chrisman, on the data sequence that gave rise to
the relative frequencies. There is some justification in
doing the latter, but it is not the direction we follow.

Walley [13], Theorem 3.3.3, informs us that a lower
prevision P is coherent if and only if it is the lower en-
velope of a set M of finitely additive measures. The-
orem 3.6.1 further asserts that M can be taken to
be convex, although Walley [13], p. 505, asserts that
“The properties of compactness and convexity of M
do not appear to have any behavioural significance.”
Nonetheless, we are encouraged by Theorem 3.6.1 to
focus on convex M. This condition on coherent P
can also be recast in terms of three simple analyti-
cal conditions (Walley [13], Theorem 2.5.5) previsions

(expectations):

PX ≥ inf
ω
X(ω);

λ > 0 ⇒ PλX = λPX;

P (X + Y ) ≥ PX + PY.

Coherent upper previsions P̄ are determined by

P̄X = −P (−X).

Characterizations of imprecise knowledge in terms of
a set of measures M is also a mainstay of classical,
frequentist statistics in which an “unknown” param-
eter θ ∈ Θ indexes a set of measures M = {µθ :
θ ∈ Θ}. Curiously, frequentist statisticians provide
no frequentist interpretation for their concept of the
unknown parameter. They do, of course, assume that
there is a true parameter value θ0 and the measure
µθ0 governs the observation X. Bayesians grandly
dispense with ignorance by requiring a precise prior π
on Θ.

Our goal is to provide an objective frequentist under-
standing of M developed in the fundamental case of a
random variable X taking on only finitely many val-
ues. We can either choose to elaborate a view based
upon a single time series realization or upon an en-
semble of such time series. Our non-exclusive focus
is on the case of relative frequencies calculated along
a single time series {Xi, i = 1 : n} of finite length n.
We share with Kolmogorov [5] the belief that

(1) The frequency concept based on the no-
tion of limiting frequency as the number of
trials increases to infinity, does not con-
tribute anything to substantiate the appli-
cability of the results of probability theory
to real practical problems where we have al-
ways to deal with a finite number of trials.

More needs to be said, however, about what we mean
by “finite”. First of all, our sequences cannot be
“short”. If they are not long enough, then, as we
shall see from the considerations of Section 4, there
will not be an arithmetic opportunity for the gen-
eration of the necessary variety of relative frequen-
cies. Furthermore, the concept of Kolmogorov com-
plexity, reviewed in Section 6, is only meaningful for
sequences that are sufficiently long compared to cer-
tain constants (e.g., gS,Ψ) that are implicit in the
defining choice of universal Turing machine. There
is also an issue with the sequences being “very long”
or with the perspective of the “long-run”. Our in-
vestigation is based upon a premise of instability or
variety in the world. The exceeding complexity of the
world interacting with the data sources we propose



to model (e.g., natural language sources of text or
speech, file sizes transferred over the Internet) is one
reason for there to be unpredictable temporal vari-
ations even over fairly long time periods. However,
over very long time periods, one can expect aging ef-
fects and perhaps other phenomena that change or
destroy the data source under consideration. This ef-
fect, while well-known, is conveniently overlooked in
the fiction of the “long-run” essential to the frequen-
tist views of conventional probability. Having said
this, we can be somewhat quantitative about what
we mean by “short” but not about the real-world de-
pendent meaning of “very long”.

3 Desiderata for Typical Sequences

We seek an operational interpretation of the family M
in which there is no true measure governing outcomes.
Put otherwise, what objective, frequentist data is typ-
ical or representative of such a specification of impre-
cise probability? We restrict ourselves to sequences
drawn from a finite alphabet corresponding to a fi-
nite sample space. The essence of the problem ap-
pears most clearly in the finite alphabet case and its
exploration is freed from complicating technicalities
and vitiating idealizations. If the data is to describe
M then relative frequencies calculated along the se-
quence (we are not taking an ensemble view) should
come close to each of the measures in M. Each mea-
sure in M should be approximated in a persistent
fashion rather than transiently. If we allowed an in-
finitely long sequence, then this notion of persistence
would be well-captured by recurrence infinitely often,
and we would not need to commit to a specification
of the rate of occurrence (e.g., see Walley and Fine
[12]). However, we agree with Kolmogorov that our
earthly concerns are with finite sequences. It does us
no good in practice to have an essentially asymptotic
interpretation that cannot be made sense of in the
finite case.

Finally, a burden of foundations of probability is that
numerical probability and an objective interpretation
that is frequentist is so well-embedded that no alter-
native can compete on an equal footing. An alter-
native probability model has a chance of acceptance
only if any competing standard probability model
is so complex that it is cut off by Ockam’s Razor.
This is particularly challenging in the setting of finite
sequences of lengths that are “long” but not “very
long”.

Hence, given a family of measures M, we seek a con-
struction for generating:

• (necessarily) long finite sequences,

• that exhibit observably persistent oscillations
of relative frequencies,

• closely visiting given measures and no oth-
ers,

• with such oscillations occurring in a highly com-
plex pattern of transition times,

• that contraindicates an underlying determinis-
tic (relatively simple) mechanism governing such
transition times.

• The resulting pattern of relative frequencies
should discourage alternative explanations.

4 Requirements for Transitions
between Relative Frequencies

We first expose the arithmetic considerations that
force us to consider long finite sequences. This devel-
opment will also underlie subsequent approaches to
approximation and complexity constraints. Assume
that at time n0 we have achieved a relative frequency
of measure P0 and wish to (nearly) achieve P1 	= P0 at
some minimal later time n1. Let β = n1/n0 and note
that β > 1, n1 > n0 > 0. Let P2 be the measure rep-
resenting the composition of outcomes on trials from
n0 +1 to n1. Hence, equality of compositions requires
that

βP1 = (β − 1)P2 + P0,

where P0, P1 are given and the minimal β and neces-
sary measure P2 are to be found. Unit normalization
for P2 follows immediately from that for P0, P1. Let-
ting α denote the alphabet or sample space of possible
elementary outcomes ω ∈ α, Λ(ω) = P0(ω)/P1(ω), we
see that

β − Λ
β − 1

=
P2

P1
≥ 0,

with the last inequality following from the required
nonnegativity of P2. It follows that nonnegativity im-
plies the constraint

β ≥ max
ω∈α

Λ(ω),

and the minimal value of β is this maximum of Λ.
Arithmetic round-off issues (βn0 is usually not an
integer n1) can prevent us from exactly achieving a
prescribed relative frequency for any finite sequence
length.

We see that arithmetic requires that the sequence of
waiting times, {ni − ni−1}, for successive transitions
measures Pµi−1 and Pµi

grows at least exponentially
fast. This suggests that these models will be appropri-
ate when dealing with such long sequences as might
arise from heavy-tailed waiting times. Heavy-tailed



phenomena are conventionally modeled by distribu-
tions having infinite higher order moments, and of-
ten even all moments are infinite. While it is pos-
sible to construct (asymptotically stationary) simu-
lation models having persistently fluctuating relative
frequencies by using a block-length distribution hav-
ing an infinite mean, we propose a method that does
not require infinite mean random variables.

5 Approximating M by a Finite
Covering M̂

In order to define what we mean by a complex pat-
tern of relative frequencies closely visiting the mem-
bers of M, we first convert the typically uncountable
M into a finite subset M̂. A further important rea-
son for doing so is that Kolmogorov complexity K of
sequences, discussed in the next section, does not dif-
ferentiate with respect to the size of the differences
between successive elements. The paradox is that,
because there is a one-to-one correspondence between
sequences xn, over an alphabet given by the set α, and
their relative frequencies rn, highly complex α-valued
sequences x can correspond to very simple sequences
of relative frequencies if one ignores the tiny variations
in relative frequencies that are the only ones possible
for large n. Very small differences in the sequence of
relative frequencies can yield high complexity,

(∃c)(∀xn)K(rn) > K(xn) − c.

We deal with this by quantizing the set M of mea-
sures determining a lower envelope through a finite
approximating set M̂ of m measures that cover M
to within a (small) value of an appropriately selected
distance measure d. By requiring transitions between
measures in M̂, we force the relative frequencies at
transition times to have at least a minimum change.
A natural choice for the distance between measures
d(P0, P1) is based upon the minimum ratio β = n1/n0

needed to transition from P0 at n0 to P1 at n1,

log(β) = max
ω∈α

{log(P0(ω)) − log(P1(ω))} ≤

d(P0, P1) = max
ω∈α

| log(P0(ω)) − log(P1(ω))|.

It is readily verified that d possesses the properties of
a metric on the probability simplex. Henceforth, we
approximate the minimal β by the upper bound ed

and require the constraint

n1 ≥ edn0. (∗)

6 Maximum Kolmogorov Complexity

Our approach is based upon the notion of Kolmogorov
complexity (see Li and Vitanyi [7]) and generates a

simulation with the desired properties. While the re-
sulting simulation must appear to be nonstationary,
nothing is assumed a priori about nonstation-
arity beyond the constraint of Eq. (*). In Section 7
we will couple Kolmogorov complexity to the genera-
tion of the sequences we desire. A straightforward ap-
plication of maximum Kolmogorov complexity to the
data sequence itself would lead merely to a Bernoulli
sequence for probability one-half.

We first introduce the complexity concept itself. Let
S(M̂) denote a recursive (so that it is effectively com-
putable) countable set of finite length, strings over an
alphabet α of size, say, κ. Let Sn(M̂) denote the
finite subset of S of strings of length n; Sn will be
further identified in Section 7 as specifying the es-
sential characteristics or state of the α-valued strings
whose relative frequencies interest us. For purposes of
simulation we wish to identify the most complex, least
structured, most pattern-free strings in Sn, subject to
the constraints we will impose in Section 7 to select
α-valued strings whose associated sequences of rela-
tive frequencies persistently approximate to measures
in M̂.

The Kolmogorov complexity KΨ(s|Sn) of an element
s ∈ Sn is the length |p| of the shortest binary-valued
string p that is a program for a universal Turing ma-
chine (UTM) Ψ whose output is the desired string
s ∈ Sn (see Li and Vitanyi [7] for details). There ex-
ists a finite gS,Ψ for the UTM Ψ, such that if ||Sn||
denotes the finite (≤ κn) cardinality of the set Sn,

�log2 ||Sn||� ≤ max
s∈Sn

KΨ(s|Sn) ≤ gS,Ψ + �log2 ||Sn||�.

Hence, for large n, maximum Kolmogorov complexity
strings in Sn have complexity about log2 ||Sn||.
Kolmogorov complexity is not effectively computable
(is not itself a recursive function), and this is closely
related to the well-known undecidability of the halting
problem.

If we select m and a string s∗ at random from the set
Sn, then

P (KΨ(s∗|Sn) ≥ log2 ||Sn|| −m) ≥ 1 − 2−m.

Hence, strings randomly selected from Sn will
with high probability be nearly maximally
complex. This provides a “practical” method for
identifying nearly maximally complex strings and con-
structing simulations that are highly probable to gen-
erate appropriate sequences.



7 A Simulation Algorithm for Lower
Envelopes

Let k denote the number of transitions between mea-
sures in M̂. Let mε denote the starting point for
examination of relative frequencies, selected to ignore
the initial necessarily large fluctuations in relative fre-
quencies for small sample sizes.

Define

Σk = {(µi, ni) : for i = 1, . . . , k,

mε ≤ ni < ni+1 ≤ n, nk+1 = n,

ed(Pµi
,Pµi+1 )ni ≤ ni+1},

as a sequence of k pairs specifying that measure Pµi ∈
M̂ is achieved at sample position ni.

7.1 Algorithm

1. Choose k and Σk having the jointly maximum
Kolmogorov complexity.

2. This can be assured with high probability by ran-
dom selection. (These should then be the most
irregular and least predictable choices of pairs
of measures and transition times satisfying the
given constraints.)

3. Interpolate so as to achieve the successive mea-
sures required at the transition times, as deter-
mined by Step 1.

4. This interpolation, between, say, initial Pµi
at ni

and final Pµi+1 at ni+1, will have a high probabil-
ity of being of maximum complexity if it is carried
out by an independent and identically distributed
sequence of discrete random variables governed
by a measure Qi+1 satisfying

γi+1 =
ni+1

ni
, Qi+1 =

γi+1Pµi+1 − Pµi

γi+1 − 1
.

Success is assured by satisfaction of the con-
straint that

γi+1 ≥ ed(Pµi
,Pµi+1 ) ≥ βi+1.

8 Statistical Analysis

Random selection requires knowing, for each k, the
number R(k) of sequences of type Σk. An approxi-
mation to the number R(k) of sequences of length n
with first transition point occuring no earlier thanmε,
there being exactly k transition points on a set of m
measures, and we consider transitions only to the ν

nearest neighbor measures lying at a distance d from
the current measure, is given by

R(k) = mνk−1 (n− ed(k−1)mε)k

k!e
1
2 dk(k−1)

. (∗∗)

The entropy H(k) of the process generating sequences
of type Σk, conditional upon k, is just log(R(k)).

The probability πk of choosing a particular number of
transitions k is given by

R =
∑

j

R(j), πk = P (K = k) =
R(k)
R

.

Further analysis reveals that the number k of tran-
sition points has a probability mass function that is
approximately normally distributed.

The overall entropy of the process generating se-
quences of type Σk is

H = log(R),

which is a good approximation to the Kolmogorov
complexity (see Section 6).

9 Examples of Ternary-valued
Simulation Sequences

Throughout this simulation we have α = {1, 2, 3}, and
M is defined as the convex hull of the following three
extreme point measures described as the rows of the
matrix

P =




1/3 − 1/36 1/3 + 1/72 1/3 + 1/72
1/3 + 1/72 1/3 − 1/36 1/3 + 1/72
1/3 + 1/72 1/3 + 1/72 1/3 − 1/36


 .

Furthermore, we start making transitions only after
mε = 1000, to ignore unavoidably large fluctuations.

The two simulations displayed differ only in the den-
sity of the covering of M by M̂. The maximum se-
quence length is governed by Matlab’s largest integer
R = 1e300 for which log(R) = 691. In each of the two
examples below, we provide the following five plots:
comparisons of the actual entropy H of the transition
pairs {(µi, ni), i = 1 : k} to the approximation based
on Eq. (**), and the variance and mean of the num-
ber k of transition points as a function of sequence
length together with our analytical approximations
to them; the relative frequencies for the three out-
comes from 1000:end; the relative frequency trajec-
tory shown with the approximating measures.

In the first example, using a coarse level of approxi-
mation,

d = 1.2e− 2 ⇒ m = 45.
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In the second example, using a finer level of approxi-
mation,

d = 7.1e− 3 ⇒ m = 171.
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10 Modeling

We turn to the inverse problem to simulation, infer-
ence from data to a model. How might we model given
long-run unstable frequentist data? An approach is il-
lustrated by the following

10.1 Algorithm

1. From the finite sequences of relative frequencies
{rn(ω)} on an alphabet (sample space) α of size
κ, compute the relative frequency trajectory T
lying in the probability simplex in IRκ. Do so
only for n ≥ mε >> 1.

2. Estimate M by the convex hull of T , or by a
smoother version defined by the hyperplanes de-
rived from a restricted set of random variables
(gambles) {Xi} of particular interest. These
random variables induce hyperplanes with nor-
mal ±Xi and thresholds mink≥mε Erk

Xi and
maxk≥mε

Erk
Xi via

{µ : min
k≥mε

Erk
Xi ≤ EµXi ≤ max

k≥mε

Erk
Xi}.

3. A particular choice for the random variables {Xi}
is the set of indicator functions for events. In this
case, the indicated minimum and maximum ex-
pectations are the lower and upper probabilities.

4. Enlarge the convex set constructed above by
some form of “discounting” (e.g., Fierens [4],
Shafer [11], Walley [13], Sec. 5.3.5) to cover the
possibility that the data sequence is not long
enough to exhibit all of the measures in M.

At this time we have little to provide by way of an
analytical study of the properties of this algorithm.
We note that there are asymptotic analyses of learning
M from frequentist data in Cozman and Chrisman [2]
and Walley and Fine [12]. What, for example, is the
analog of traditional “goodness-of-fit” in this setting?

11 Application to Vowels Data

Data to which to apply our modeling approach should
exhibit long-run instability of relative frequencies,
without admitting a fairly simple explanation for this
instability. Possible examples, drawn from such In-
ternet variables as lengths of web files requested and
sizes of packets and delays in their transmission, are
discussed in Crovella, Taqqu, and Bestavros [3] and
Willinger and Paxson [14], albeit these authors ar-
gue for conventional but heavy-tailed statistical mod-
els. We apply the above approach to model data on
the occurrences of the vowels a,e,i,o,u in messages
drawn from Internet job postings in the first half of
December 2000. We restrict our attention to just the
5.5 million occurrences of these vowels, ignoring all
other ascii characters in the approximately 12000 in-
dividual messages. In order to render intelligible the
displays given below, we clustered the five vowels into
three classes by grouping [a,u] and [i,o]. For typo-
graphical reasons, all the plots for this section follow
the References.

We divided the vowels data into twenty consecutive
long blocks of lengths 250000 (this being deemed
“long” but not “very long”). We calculated the rela-
tive frequencies of the three clusters and display their
trajectory starting from trial 1000 (to eliminate the



usual large fluctuations of relative frequencies in short
initial sequences). The trajectory for the first such
block is shown first, followed by the trajectories for
the first nine blocks. The bounding box shown in
the second figure is the convex set determined by just
the lower and upper probabilities of elementary out-
comes. The third figure repeats the second figure,
but this time for blocks 11 through 19. The fourth
figure then compares the two convex bounding boxes
for both data sets, circles indicating the box corre-
sponding to the first nine trajectories. Note that the
boxes overlap substantially but fall short of the coinci-
dence one might desire. This suggests that the vowel
data has substantial temporal variability, and if we
wished the convex set estimated, say, from Blocks 1:9
to contain the trajectories generated by Blocks 11:19,
then discounting is needed.

Finally, using the convex estimate based upon the 30
nontrivial events for five vowels, we then simulated a
trajectory, shown in Figure 5, for samples sizes 1e3 to
5e3.

In the paper to be presented in June we expect to have
additional vowel data and comparison of the results
obtained from our envelope methodology with those
from a traditional stochastic model.
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Figure 1: Trajectory of Block 1 of Vowels
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Figure 2: Trajectories of Blocks 1:9 of Vowels
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Figure 3: Trajectories of Blocks 11:19 of Vowels
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Figure 4: Two IVP Bounding Sets
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Figure 5: Simulated Vowel Data


