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Abstract

We introduce the fuzzy measure and its use in
representing information about uncertain variables. The
relationship between the fuzzy measure and the
Dempster-Shafer belief structureis discussed. A method
for generating the family of fuzzy measures associated
with a D-S belief structure is described. We discuss the
use of the Shapley index as a means for introducing an
extension of concept of entropy to fuzzy measures. We
introduce the cardinality index of a fuzzy measure and
use it to define the attitudinal character of a fuzzy
measure.
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1. Introduction

Fuzzy measures [1-3] can be used to represent
information about an uncertain variable. The fuzzy
measure conveys the users "opinion" of finding the
value of the variable within asubset. In providing this
information the user is reflecting at least two aspects of
his view of the state of the world. The first reflects the
capacity of each of the allowable values for being the
actual value of the variable and hence involves
information related to distinctions between the possible
values. In a situation in which one outcome
distinguishes itself as being the only achievable value
we are in a state of complete certainty. On the other
hand in the situation in which no distinction can be
made regarding the attainability of any of the allowable
outcomes, we are in a state of complete uncertainty.
This aspect, based upon information emanating from
distinctions, is closely related to our assessment of the
situation on a scale with a dimension indicating a
certainty-uncertainty component in our knowledge. In
probability theory an often used quantification of this
aspect of our knowledge about a variable is the Shannon
entropy. In this work we use the Shapely entropy as a
way of generalizing thisideato the fuzzy measure.

When using a fuzzy measure the user is often reflecting
an additional aspect of their view of the world different.
This aspect becomes most nakedly apparent in the case
of complete uncertainty. At one extreme isthe casein
which one uses a fuzzy measure which assigns the value
of one to each subset except the null while at the other
extreme is the case of afuzzy measure which assigns a
zero measure to each of the subsets except the universal
subset which must be given the value one. The choice
between these two is also a reflection about the users
view of the state of the world. These two extreme fuzzy
measures are both manifestations of complete
uncertainty and hence the Shapley entropy can't
differentiate between them. In thiswork we introduce a
index, called the cardinality index, that allows us to
distinguish between these two extreme fuzzy measures.
We use this cardinality index to associate with each
fuzzy measure a formal concept called its attitudinal
character. These notions provide an additional dimension
on which to classify fuzzy measures.

the

2. Fuzzy Measures and

Representation of Uncertainty

A fuzzy measure [2] on afinite space X isamapping W
2X _, [0,1] suchthat p(0) =0, pu(X)=1andif AOB
then u(A) < u(B). Fuzzy measures can be used in the
representation of knowledge about an uncertain variable.
Let V be avariable taking its value in the set X. When
using a fuzzy measure to represent knowledge about V
M(E) isinterpreted as what we shall call the "certitude"
that the value of V is contained in the subset E. A
significant feature of the use of fuzzy measures is their
ability to capture in a unified framework, many of the
well established uncertainty calculi.. We shall briefly
indicate some of these. If we know precisely the value
of V, V =X, then uy(A) =1 for x 0 A and py(A) =0
for x O A. Probabilistic uncertainty is represented by a
fuzzy measure in which p(AOB) = u(A) + u(B) for
AnB =0. Possibilistic uncertainty [4] is characterized
by afuzzy measure in which p(A) = Max[u(A), u(B)].
A fuzzy measureis called a necessity measure [4] if it



satisfies the property that p(AnB) = Min[u(A), u(B)].
Another class of fuzzy measures are those in which our
certitude that the value of a variable lies in a subset is
based upon the number of elements in the subset [5],
we call these cardinality based measures. For these
measure W(E) = Dcard(E). Because of the
monotonicity of fuzzy measures Dj 2 Dj forj > i.
Furthermore, Dg = 0 and D, = 1. One important
special case of cardinality based measures, My Occurs

%. It is noted
that this measure is the same as the one used to
represent lack of information in the case of probabilistic
uncertainty. Another special case is u* where Dg =0

and Dj =1 for al other j. Itis noted that this measure
is the same as the one used to represent lack of

information in the case of possihilistic uncertainty.
Another special case of cardinality based measureis 1,

when D; :jﬁ, in this case p(E) =

having Dy, = 1 and Dj =0 for al other j, this measures

is the same as the one used to represent lack of
information in the case of the necessity measure

3. Fuzzy Measures and Dempster-
Shafer Belief Structures

A fuzzy measure p with respect to V provides a
description of our knowledge about the variable. When
using a fuzzy measure, although there exists some
uncertainty with respect to the actual value of the
variable, there exists no uncertainty with respect to our
knowledge of the description of the uncertainty. An
example of this kind of additional uncertainty would be
a situation in which we only knew that p(A) lies in
someinterval. The Dempster-Shafer belief structure [6]
provides a framework for the representation of
knowledge about the value of an variable which can be
used when there exists some uncertainty regarding our
knowledge of the underlying fuzzy measure[7]. If V is
a variable taking its value in the space X a D-S belief

structure is defined by a mapping m: 2X [0, 1] such
tham(d)=0and ) m(B)=1. Wecall the subsets

BOX
Bj for which m(Bj) > 0 the focal elements, hence
q
condition 2 becomes z m(Bj) = 1.
=1

The use of a D-S belief structure to describe our
knowledge about a variable provides only "partial
information" about the underlying fuzzy measure.

Given a D-S belief structure there are many possible
fuzzy measures that can satisfy the constraints it
imposes [7]. The two most well known fuzzy measures
associated with a belief structure are the plausibility and
belief measures. We can view a D-S belief structure as
a constraint on the set of all fuzzy measures of X
generating a set of possible fuzzy measures associated
with the variable. In[7] we provided a methodology for
generating the set of fuzzy measures that can be
associated with a belief structure. In the following we
describe this methodology.

Let m be a D-S belief structure with focal elements B,

B2, ... Bq. For each focal element B; let Wj be a

vector of dimension |Bj| whose components, Wj(i),
Bi

satisfy the conditions wj(i) O [0, 1] and 3 wj(i) = 1.

1 =

We shall call these the allocation vectors. In [7] we
q

show that a set measure defined by P(E) = 5 (m(B;)

i=1
BjnE
Z Wj(i)) is a fuzzy measure associated with the

i=1

belief structure m. In the preceding if |BjnE = 0 then
we take the sum as zero. Thus by selecting a collection
W = <Wq, Wy, ..., Wq> of allocation vectors we can
define a unique fuzzy measure associated with a belief
structure. We point out some special cases. If al the
W;j are such that Wj(l) = 1 then the resulting fuzzy

measure is the plausibility measure. If all the Wj are
selected such Wj(|Bj [) = 1, then this results in the belief

measure. It can be easily shown that these two
measures are the extremes, that is if p is a fuzzy
measure generated from a collection of allocation
vectors W then for all A O X, PI(A) = u(A) = Bel(A).

While we can individually select each of associated
allocation vectors it is often more interesting to select
al the vectors in some consistent way as in the case of
plausibility and belief.. One way of selecting the
alocation vectors in a consistent manner is by use of a
function f: [0, 1] - [O, 1] such that: f(0) = 0, f(1) = 1
and f(x) = f(y) if x=2y. Using this type of function we
can globally define all the allocation vectors Wj as

follows. For each Bj we define each Wj such that Wj(i)

=f(1 ) - f(i=1). Aninteresting special case occurs

IBj| IBj|
when F(X) = x.. Herethe Wj are such that Wj(i) = ﬁ
]



the weights in each alocation vector are uniformly
distributed. In this case the resulting fuzzy measure is

d BjnE -
such that W(E) = » m(Bj) . We note in this

i=1 Bj
case that p({xk}) = Y @ and that
stkaleBﬂ
NEENEDY H({xk}), thus the measure generated

k st. XkUE
from thislinear F is a probability measure.

We now consider the fuzzy measures resulting from

some special cases of D-S belief structures. Consider

the Bayesian belief structure, each focal element isa

singleton, Bj = {xj}. Let Wj be any collection of

allocation vectors and p be the fuzzy measure generated
q BjnE

by these vectors, H(E) = > (m(B)) > w;(i)).
ji=1 i=1

Since each focal is a singleton, |Bj| =1, thus each Wi
consists of only one component with value one, Wj Q=
BjnE

1forallj.. Inthiscaseweseethat 3 wj(i) = 1 if

i=1
BjnE
BjnE# [, if xj O Eand izl wj(i) = 0if BjnE =0,

if X O E. Thus here we always get p(E) =
Z m(Bj) which is a probability measure. Thus
stﬁDE
this Bayesian D-S structure is only compatible with
this probability measure. The obvious reason for this
is that the Bayesian D-S belief is a true probability
distribution and therefore precisely specifies a unique
fuzzy measure.

Consider the D-S belief structure in which B = X and
m(X) = 1. This essentially corresponds to a case in
which we have no information about the value of the
variable other than that it liesin X. In this case we just
need to choose one weighting vector W whose
cardinality is [X|= n. Using this we get u(E) =
XnE E

Z w(j) = Z w(j). Here Y(E) is the sum of the first
j=1 =1
|E] elements in the vector W.

4. Entropy of A Fuzzy Measure

In probability theory an important tool is the Shannon

entropy. With the aid of this tool we are able to
express some quantification of the overall uncertainty
associated with a probability distribution. Entropy can
be seen as providing some indication about the
distinction between the different outcomes with respect
to there being the actual value. In[5] Yager suggested
an extension of the Shannon entropy to the fuzzy
measure, he called this the Shapley entropy. The
definition makes use of the Shapley index associated
with afuzzy measure [8-10]. Let u be afuzzy measure
on the space X = {Xq, ..., Xn}. For any X 0 X we
defineits Shapley index % as

n-1
S= Y (v > WKI{DGH - uK))
k=0 KOF;
K=k
where K is a subset of cardinality |K|, Fj =X - {xJ-} and
_(n-k-Dk!
Y n! '

Thisindex can basically be seen as the average increase
in "certitude" obtained by adding the element Xj to aset
which doesn't contain it. Thus we see that the Sq are

providing some information distinguishing between the
different X;- It can be shown that for any fuzzy measure

n
W, itisalways the case that all S [0, 1] and > Sj-
j=1

In [5] we suggested the use of these indices in the form
of an extension of the concept of entropy to fuzzy
measures. In particular he defined the Shapley entropy
of afuzzy measure as H(p) = - 2 Sj In(Sj). It can be
shown that in the case when [ is a probability measure
this reduces to the Shannon entropy, we get Sj =D for

al j and hence H(u) = - Zj pj In(p)).

It aso can be shown [5] that in the case of any
cardinality based measure that % :% and H(p) = In(n).

This situation further supports the appropriateness of
using this measure as a generalization of entropy. For
aswe have indicated the entropy is essentially providing
some indication about the distinction between the
elements in X regarding their appropriateness of being
the value for V. In the case of a cardinality based
measure we have no information distinguishing between
the elements in X regarding the appropriateness as a
solution for V. Thus the measures p*, i, and p as

well as al other cardinality based measures have the
same entropy, In(n).



An interesting special case occurs with the D-S belief
structure [11].
Theorem: Assume mis aD-S belief structure with g
focal elements, Bj. If p is any fuzzy measure obtained
from m by use of a collection W = [Wq, ..., Wq] of
allocating vectors then the associated Shapley index is
q .
s= 3 "oV B

€1 1§
Here we used Bj(xi) to indicate the characteristic
function of Bj. The implication of this theorem is that

all the fuzzy measures associated with a D-S structure
have the same Shapley entropy, contain the same
information regarding the distinction between the
different elements.

5. Cardinality Index and Attitudinal
Character of a Fuzzy Measure

Consider the two fuzzy measures u* where p*(0) =0
and p*(A) =1for Az [ and px where px(X) =1 and
M« (A) = 0 for A # X. Both these are cardinality based

measures and hence correspond to a situation in which
we have no information distinguishing the elements in
X. These two measures are clearly different in their
nature. We see that u* is dealing with the complete
lack of knowledge in a very optimistic way, it allocates
complete certitude to finding the actual value of V in
any non-null subset. The measure [« deals with the

complete uncertainty in a very pessimistic way, it
allocates no certitude finding the value of V to any set
except X. These two fuzzy measures clearly display
polar attitudes regarding the situation when faced with
lack of information. Another fuzzy measure associated
with complete lack of information is py;, where u(E) =
Cad (E)

—

The preceding fuzzy measures have provided
illustrations of different attitudes about the nature of
uncertainty. In the following we shall introduce a
characterization of a fuzzy measure which alows us to
quantify these differing attitudes. We begin by defining
a concept which we call the cardinality index of a fuzzy
measure.

Definition: Let p be a fuzzy measure on the set X =
{X1, X9, ..., X} we definethe Cy, k=0ton-1, as

Ck=A > (D (MK O{x})-uK))

alK yok
Kl =k

—(n-k-1)'k!
n! '
cardinality index of L.

where Ay We call Cy the kth

Essentially Cy. measures the average gain in certitude in

going from subsets of cardinality k to cardinality k + 1

It can be shown [11] that Cy O [0, 1] for @l k = 0 to
n-1

n-1and z Ck=1
k=0

We now evaluate the cardinality index for the cardinality

based fuzzy measure. Werecall here W(E) = D|E| where

0=Dg<Dq<Dy..,<Dp=1 We can express this

in terms of a collection of weights, wj,i =0ton-1

such that wj = Dj41 - Dj. It's easy to see that w; O [0,
n-1

Jand > wj=1. We seethat w; is the incremental
i=0

gain in going from a set of cardinality i to one of

cardinality i + 1. The cardinality index is Cy =

A D> (D (MK O{x}) - u(K))). However, for this

alK xok
K=k

type of measure u(K O {x}) - u(K) = wy for all sets of
cardinality k. From this it follows that Cy = wy, the
cardinality index for these measures is simply the
differential weights. What should be strongly pointed
out here is that as opposed to the Shapley index, which
makes no distinction between any cardinality based
measure, this index completely distinguishes between
different cardinality based measures.

In [11] Yager used the cardinality indices to provide a
characterization of a fuzzy measure which he called its
attitudinal character. If yu is a fuzzy measure with
cardinality indices Cy, we define the attitudinal character

n-1
of p as A-C() =% > Ck(n-k-1). Inorder to
n-1k=o0
provide a semantics for this concept of attitudinal
character we consider the three special cases of

cardinality based measures, u*, My and N First we

obtain the cardinality indices for these three measures.
For p*, Co=1and Cx =Oforal k# 0. For p,,Cp.1

=1and Cy =0for k #n-1. For M where uN(E) =
CaerE we we see that C :%for all k. We can use

these values to obtain the attitudinal character of these
measures: A—C(u*) =1, A-C(up) = 0.5and A—C(u,)

=0. Since acardinality based measureisa



representation of a situation of complete uncertainty the
distinction between the different measures is purely a
reflection of an attitude in the sense that the pu* is
extremely optimistic, U« is pessimistic and py is
neutral. Based on this the attitudinal character can be
seen as inducing a scale on the unit interval in which
A—-C(p) = 1 indicates an optimistic type measure,
A-C() = 0 indicates a pessimistic type measure and
A—C(n) = 0.5 indicates a neutral type measure.

Consider the cardinality index in the case where pisa
probability measure with probability distribution
Prob(xi) = pj. We can express Cx = Ay

Z ( > (WK O{x})-uK)) where Fj = X - {xi}.
i=1 Kst

Kl=
KDFi
After some algebra we get Cgp =

12 -K-DKC S (uk O {x}) - 1(K)))

i1 (- « St
K|=
KO Fi
Realizing that ~ (1) s the number of different
(n-k-1 K

subsets of cardinality k we can select from Fj and with
u(K O {x}) - u(K) = p;j for al K then we see that Cy, =

1 Z pj. Since z pj = 1 we obtain that Ck:lfor

=1 =1
alI ® mdependent of the probability distribution. Two
significant observations can be made. The first is to
emphasize that all probability measures have the same
cardinality indices, Cy :% for all k.. Thus this

characterization does not distinguish between
probability distributions. The cardinality index can be
seen as being orthogonal to the Shapley index; the
Shapley index completely distinguishes between every
probability measure, while being unable to make any
distinction between cardinality based measure. All

cardinality based measures have S :% for al i. The

cardinality index on the other hand completely
distinguishes between cardinality based measures and
makes no distinction between probability measures.
Thus these two indices are characterizing orthogonal
aspects of the fuzzy measure.

The second observation we would like to make is related
to the fact that the cardinality indices of a probability

measure are Cy = % for al k. This correspondsto an

A-C value of 0.5 which corresponds to a neutral value
on are attitudinal scale. This situation is not
unexpected in that the probability distribution offers no
choice in allocation, it corresponds to D-S belief
structure with no uncertainty with regard to the
parameters.

We see that we now have two scales on which to
characterize a fuzzy measure. The first is the
uncertainty scale which is generated with the aid of the
Shapley index via the Shapley entropy. The second is
the attitude scale which is generated with the aid of
cardinaity index viathe attitudinal characterization.
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