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Abstract When using a fuzzy measure the user is often reflecting
We introduce the fuzzy measure and its use in an additional aspect of their view of the world different.
representing information about uncertain variables.  The This aspect becomes most nakedly apparent in the case
relationship between the fuzzy measure and the of complete uncertainty.  At one extreme is the case in
Dempster-Shafer belief structure is discussed.  A method which one uses a fuzzy measure which assigns the value
for generating the family of fuzzy measures associated of one to each subset except the null while at the other
with a D–S belief structure is described.  We discuss the extreme is the case of a fuzzy measure which assigns a
use of the Shapley index as a means for introducing an zero measure to each of the subsets except the universal
extension of concept of entropy to fuzzy measures.  We subset which must be given the value one.  The choice
introduce the cardinality index of a fuzzy measure and between these two is also a reflection about the users
use it to define the attitudinal character of a fuzzy view of the state of the world.  These two extreme fuzzy
measure. measures are both manifestations of complete

uncertainty and hence the Shapley entropy can't
Keywords. fuzzy measures, cardinality based differentiate between them.  In this work we introduce a
measures, entropy, attitude index, called the cardinality index, that allows us to

distinguish between these two extreme fuzzy measures.
1. Introduction We use this cardinality index to associate with each

fuzzy measure a formal concept called its attitudinal
Fuzzy measures [1-3] can be used to represent character. These notions provide an additional dimension
information about an uncertain variable.  The fuzzy on which to classify fuzzy measures. 
measure conveys the users "opinion" of finding the

2 .  Fuzzy  Measures  and  thevalue of the variable within a subset.   In providing this
Representation of Uncertaintyinformation the user is reflecting at least two aspects of

his view of the state of the world.  The first reflects the
A fuzzy measure [2] on a finite space X is a mapping µ:capacity of each of the allowable values for being the
2X → [0,1] such that µ(∅ ) = 0,  µ(X) = 1 and if A ⊂ Bactual value of the variable and hence involves
then µ(A) ≤ µ(B).  Fuzzy measures can be used in theinformation related to distinctions between the possible
representation of knowledge about an uncertain variable.values.  In a situation in which one outcome
Let V be a variable taking its value in the set X.  Whendistinguishes itself as being the only achievable value
using a fuzzy measure to represent knowledge about V

we are in a state of complete certainty.  On the other µ(E) is interpreted as what we shall call the "certitude"
hand in the situation in which no distinction can be that the value of V is contained in the subset E.  A
made regarding the attainability of any of the allowable significant feature of the use of fuzzy measures is their
outcomes, we are in a state of complete uncertainty. ability to capture in a unified framework, many of the
This aspect, based upon information emanating from well established uncertainty calculi..  We shall briefly
distinctions, is closely related to our assessment of the indicate some of these.  If we know precisely the value
situation on a scale with a dimension indicating a of V, V = x, then µx(A) = 1 for x ∈ A and µx(A) = 0
certainty-uncertainty component in our knowledge.  In for  x ∉ A.  Probabilistic uncertainty is represented by a
probability theory an often used quantification of this fuzzy measure in which µ(A∪ B) = µ(A) + µ(B) for

A∩B = ∅ .  Possibilistic uncertainty [4] is characterizedaspect of our knowledge about a variable is the Shannon
by a fuzzy measure in which µ(A) = Max[µ(A), µ(B)].entropy.  In this work we use the Shapely entropy as a
A fuzzy measure is called a necessity measure [4] if itway of generalizing this idea to the fuzzy measure.
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satisfies the property that µ(A∩B) = Min[µ(A), µ(B)]. Given a D-S belief structure there are many possible
Another class of fuzzy measures are those in which our fuzzy measures that can satisfy the constraints it
certitude that the value of a variable lies in a subset is imposes [7].  The two most well known fuzzy measures
based upon the number of elements in the subset [5], associated with a belief structure are the plausibility and
we call these cardinality based measures.  For these belief measures.  We can view a D-S belief structure as
measure µ ( E )  = DCard(E).   Because of the a constraint on the set of all fuzzy measures of X

generating a set of possible fuzzy measures associatedmonotonicity of fuzzy measures Dj ≥  Di for j > i.
with the variable.  In [7] we provided a methodology forFurthermore, D0 = 0 and Dn = 1.  One important
generating the set of fuzzy measures that can be

special case of cardinality based measures, µN, occurs
associated with a belief structure.  In the following we

when Dj = j
n

, in this case µ(E) = Card(E)
n

.  It is noted describe this methodology.

that this measure is the same as the one used to Let m be a D-S belief structure with focal elements B1,
represent lack of information in the case of probabilistic

B2, ..., Bq.  For each focal element Bj let Wj be auncertainty.  Another special case is µ* where D0 = 0
vector of dimension |Bj| whose components, wj(i),and Dj = 1 for all other j.  It is noted that this measure

satisfy the conditions wj(i) ∈ [0, 1] and ∑
i = 1

Bj

wj(i) = 1.
is the same as the one used to represent lack of
information in the case of possibilistic uncertainty.
Another special case of cardinality based measure is µ

* We shall call these the allocation vectors.  In [7] we
having Dn = 1 and Dj = 0 for all other j, this measures

show that a set measure defined by µ(E) = ∑
j = 1

q

(m(Bj)is the same as the one used to represent lack of
information in the case of the necessity measure

∑
i = 1

Bj∩E

wj(i)) is a fuzzy measure associated with the3. Fuzzy Measures and Dempster-
Shafer Belief Structures

belief structure m.   In the preceding if Bi∩E = 0 then
we take the sum as zero.  Thus by selecting a collection

A fuzzy measure µ  with respect to V provides a
W = <W1, W2, ..., Wq> of allocation vectors we can

description of our knowledge about the variable.  When
define a unique fuzzy measure associated with a beliefusing a fuzzy measure, although there exists some
structure.  We point out some special cases .  If all theuncertainty with respect to the actual value of the
Wj are such that wj(1) = 1 then the resulting fuzzyvariable, there exists no uncertainty with respect to our
measure is the plausibility measure.  If all the Wj areknowledge of the description of the uncertainty.  An

example of this kind of additional uncertainty would be selected such wj(|Bj|) = 1, then this results in the belief
a situation in which we only knew that µ(A) lies in measure.  It can be easily shown that these two
some interval.  The Dempster-Shafer belief structure [6] measures are the extremes, that is if µ  is a fuzzy
provides a framework for the representation of measure generated from a collection of allocation
knowledge about the value of an variable which can be vectors W then for all A ⊂ X, Pl(A) ≥ µ(A) ≥ Bel(A).
used when there exists some uncertainty regarding our
knowledge of the underlying fuzzy measure [7].   If V is While we can individually select each of associated
a variable taking its value in the space X a D-S belief allocation vectors it is often more interesting to select

all the vectors in some consistent way as in the case ofstructure is defined by a mapping m: 2X → [0, 1] such
plausibility and belief..  One way of selecting the

that m(∅ ) = 0 and ∑
B ⊆  X

m(B) = 1.  We call the subsets allocation vectors in a consistent manner is by use of a
function f: [0, 1] → [0, 1] such that: f(0) = 0, f(1) = 1

Bj for which m(Bj) > 0 the focal elements, hence and f(x) ≥ f(y) if x ≥ y.  Using this type of function we

condition 2 becomes m(Bj) = 1∑
j = 1

q
.

can globally define all the allocation vectors Wj as

follows.  For each Bj we define each Wj such that wj(i)

= f( i
|Bj|

) - f(i - 1
|Bj|

).  An interesting special case occurs

The use of a D-S belief structure to describe our
when F(x) = x..  Here the Wj are such that wj(i) = 1

|Bj|
, knowledge about a variable provides only "partial

information" about the underlying fuzzy measure. 



the weights in each allocation vector are uniformly entropy.  With the aid of this tool we are able to
distributed.  In this case the resulting fuzzy measure is express some quantification of the overall uncertainty

such that µ(E) = ∑
j = 1

q

m(Bj) 
Bj∩E

Bj
.  We note in this

associated with a probability distribution.  Entropy can
be seen as providing some indication about the
distinction between the different outcomes with respect

case that µ ( { x k }) = ∑
j s.t. xk∈ Bj

m(Bj)

|Bj|
 and that to there being the actual value.  In [5] Yager suggested

an extension of the Shannon entropy to the fuzzy
measure, he called this the Shapley entropy.  Theµ(E) = ∑

k s.t. xk∈ E

µ({xk}), thus the measure generated
definition makes use of the Shapley index associated
with a fuzzy measure [8-10].  Let µ be a fuzzy measure

from this linear F is a probability measure. on the space X = {x1, ..., xn}.  For any xj ∈ X we

define its Shapley index Sj asWe now consider the fuzzy measures resulting from

Sj = ∑
k = 0

n - 1
(γk ∑

K⊂ Fj
K = k

(µ(K∪ {xj}) - µ(K)))
some special cases of D-S belief structures.  Consider
the Bayesian belief structure, each focal element is a
singleton, Bj = {xj}.  Let Wj be any collection of

allocation vectors and µ be the fuzzy measure generated
where K is a subset of cardinality |K|, Fj = X - {xj} and

by these vectors, µ (E) = ∑
j = 1

q

(m(Bj) ∑
i = 1

Bj∩E

wj(i)).
γk = (n - k - 1)! k!

n!
.

Since each focal is a singleton, |Bj| = 1, thus each Wj This index can basically be seen as the average increase
consists of only one component with value one, wj(1) = in "certitude" obtained by adding the element xj to a set

1 for all j..  In this case we see that ∑
i = 1

Bj∩E

wj(i) = 1 if
which doesn't contain it.  Thus we see that the Sj are

providing some information distinguishing between the
different xj.  It can be shown that for any fuzzy measure

Bj∩E ≠ ∅ , if xj ∈ E and ∑
i = 1

Bj∩E

wj(i) = 0 if Bj∩Ε = ∅ , µ, it is always the case that all Sj ∈ [0, 1] and ∑
j = 1

n
Sj.  

if xj  ∉ E.  Thus here we always get µ ( E )  =
In [5] we suggested the use of these indices in the form∑

j s. t. xj∈ E

m(Bj) which is a probability measure.  Thus
of an extension of the concept of entropy to fuzzy
measures.  In particular he defined the Shapley entropy

this Bayesian D-S structure is only compatible with
of a fuzzy measure as H(µ) = - Σj Sj ln(Sj).   It can bethis probability measure.  The obvious reason for this
shown that in the case when µ is a probability measureis that the Bayesian D-S belief is a true probability
this reduces to the Shannon entropy, we get Sj = pj fordistribution and therefore precisely specifies a unique
all j and hence H(µ) = - Σj pj ln(pj).  fuzzy measure.

Consider the D-S belief structure in which B1 = X and It also can be shown [5] that in the case of any
m(X) = 1.  This essentially corresponds to a case in cardinality based measure that Sj = 1

n
 and H(µ) = ln(n).

which we have no information about the value of the
This situation further supports the appropriateness ofvariable other than that it lies in X.  In this case we just
using this measure as a generalization of entropy.  Forneed to choose one weighting vector W whose
as we have indicated the entropy is essentially providingcardinality is X = n.  Using this we get µ (E) =
some indication about the distinction between the

w(j)∑
j = 1

X∩E

 = w(j)∑
j = 1

E
. Here µ(E) is the sum of the first

elements in X regarding their appropriateness of being
the value for V.  In the case of a cardinality based
measure we have no information distinguishing between

|E| elements in the vector W.
the elements in X regarding the appropriateness as a
solution for V.  Thus the measures µ*, µ*, and µN  as4. Entropy of A Fuzzy Measure
well as all other cardinality based measures have the

In probability theory an important tool is the Shannon same entropy, ln(n).



where λ k = (n - k - 1) ! k !

n !
.  We call Ck  the kt h

An interesting special case occurs with the D-S belief
cardinality index of µ.structure [11].

Theorem:  Assume m is a D-S belief structure with q
Essentially Ck measures the average gain in certitude infocal elements, Bj.  If µ is any fuzzy measure obtained
going from subsets of cardinality k to cardinality k + 1from m by use of a collection W = [W1, ..., Wq] of
It can be shown [11] that Ck ∈ [0, 1] for all k = 0 toallocating vectors then the associated Shapley index is

n - 1 and Ck = 1∑
k = 0

n - 1
.Si = 

m(Bj)

Bj
∑

j = 1

q
 ⋅ Bj(xi).

Here we used Bj(xi) to indicate the characteristic
We now evaluate the cardinality index for the cardinalityfunction of Bj.  The implication of this theorem is that
based fuzzy measure.  We recall here µ(E) = DE where

all the fuzzy measures associated with a D-S structure
0 = D0 ≤ D1 ≤ D2 ..., ≤ Dn = 1. We can express thishave the same Shapley entropy, contain the same
in terms of a collection of weights, wi, i = 0 to n - 1information regarding the distinction between the
such that wi = Di+1 - Di.  It's easy to see that wi ∈ [0,different elements.

1] and ∑
i = 0

n - 1
wi =1.   We see that wi is the incremental5. Cardinality Index and Attitudinal

Character of a Fuzzy Measure gain in going from a set of cardinality i to one of
cardinality i + 1.  The cardinality index is Ck =

Consider the two fuzzy measures µ* where µ*(∅ ) = 0
λk ∑

all K
K = k

( ∑
x∉ K

(µ(K ∪  {x}) - µ(K))).  However, for thisand µ*(A) = 1 for A ≠ ∅;  and µ* where µ*(X) = 1 and

µ*(A) = 0 for A ≠ X.  Both these are cardinality based
type of measure µ(K ∪  {x}) - µ(K) = wk for all sets ofmeasures and hence correspond to a situation in which
cardinality k.  From this it follows that Ck = wk, thewe have no information distinguishing the elements in

X.  These two measures are clearly different in their cardinality index for these measures is simply the
nature.  We see that µ* is dealing with the complete differential weights.  What should be strongly pointed
lack of knowledge in a very optimistic way, it allocates out here is that as opposed to the Shapley index, which
complete certitude to finding the actual value of V in makes no distinction between any cardinality based
any non-null subset.  The measure µ* deals with the measure, this index completely distinguishes between

different cardinality based measures.complete uncertainty in a very pessimistic way, it
allocates no certitude finding the value of V to any set

In [11] Yager used the cardinality indices to provide aexcept X.  These two fuzzy measures clearly display
characterization of a fuzzy measure which he called itspolar attitudes regarding the situation when faced with
attitudinal character.  If µ  is a fuzzy measure withlack of information.  Another fuzzy measure associated
cardinality indices Ck we define the attitudinal characterwith complete lack of information is µN, where µ(E) =

of µ as A-C(µ) = 1
n - 1

∑
k = 0

n - 1
Ck (n - k - 1).  In order to

Card (E)
n

.

provide a semantics for this concept of attitudinal
The preceding fuzzy measures have provided character we consider the three special cases of
illustrations of different attitudes about the nature of

cardinality based measures, µ*, µ* and µN  First weuncertainty.   In the following we shall introduce a
characterization of a fuzzy measure which allows us to obtain the cardinality indices for these three measures.
quantify these differing attitudes.  We begin by defining For µ*, C0 = 1 and Ck = 0 for all k ≠ 0.  For µ*,Cn-1
a concept which we call the cardinality index of a fuzzy = 1 and Ck = 0 for k ≠ n–1.  For µN, where µN(E) =
measure.

Card E
n

  we we see that Ck = 1
n

 for all k.  We can useDefinition:  Let µ be a fuzzy measure on the set X =
{x1, x2, ..., xn} we define the Ck, k = 0 to n - 1, as these values to obtain the attitudinal character of these

Ck = λk ∑
all K
K = k

( ∑
x∉ K

(µ(K ∪  {x}) - µ(K))) measures: A–C(µ*) = 1, A-C(µN) = 0.5 and A–C(µ
*

)

= 0.  Since a cardinality based measure is a 



representation of a situation of complete uncertainty the A-C value of 0.5 which corresponds to a neutral value
distinction between the different measures is purely a on are attitudinal scale.  This situation is not
reflection of an attitude in the sense that the µ* is unexpected in that the probability distribution offers no
extremely optimistic, µ* is pessimistic and µN is choice in allocation, it corresponds to D-S belief

structure with no uncertainty with regard to theneutral.  Based on this the attitudinal character can be
parameters. seen as inducing a scale on the unit interval in which

A–C(µ) = 1 indicates an optimistic type measure,
We see that we now have two scales on which toA–C(µ) = 0 indicates a pessimistic  type measure and
characterize a fuzzy measure.  The first is theA–C(µ) = 0.5 indicates a neutral type measure.
uncertainty scale which is generated with the aid of the
Shapley index via the Shapley entropy.  The second isConsider the cardinality index in the case where µ is a
the attitude scale which is generated with the aid ofprobability measure with probability distribution
cardinality index via the attitudinal characterization.P r o b ( x i ) = pi .  We can express Ck  = λ k

∑
i = 1

n
( ∑

K s.t.
K| = k

K ⊆  Fi

(µ(K ∪  {xi}) - µ(K))) where Fi = X - {xi}. 6. References
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