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Abstract

A practical way of eliciting convex sets of probability
measures on a real continuous variable is introduced,
one which mathematically defines vagueness and al-
lows for its explicit treatment when it emerges from
the activity of making inferences about a parameter
based on available evidence through expert opinion.
In the setup of the protocol, new indexes are intro-
duced concerning the detailing of the questionnaire.

Keywords. elicitation, uncertainty, prior knowledge,
prior distribution, expert opinion, convex sets of prob-
ability measures, vagueness.

1 Introduction

Bayesian inference provides a method for the treat-
ment of the a priori, subjective, accumulated knowl-
edge that one has about a state of the world. The a
priori probability, used in Bayesian inference, is also
called subjective or epistemic probability, and it rep-
resents the degree of belief that the individual has
in the occurrence of an event which is represented in
terms of the variable θ. Notwithstanding its claimed
advantages, one of the main drawbacks of this ap-
proach is that a precise prior distribution is needed.
The attempts to circumvent this disadvantage include
the consideration of families of prior distributions, as
in sensitivity analysis or robustness. More generally,
there is a whole field of imprecise probabilities that
deals with this kind of problem.

The protocol presented here is part of a method that
provides a systematic procedure for the elicitation of a
a priori knowledge, i.e., of a prior distribution of some
unknown real-valued continuous parameter, from an
expert. It is useful in practical, real world, settings,
where, typically, the available evidence is of a mixed,
partial, nature, and the expert’s knowledge has always
a certain degree of vagueness.

The protocol is based on the research results presented

in [1], [2] and [3]. It avoids betting schemes, which are
a source of confusion, given that judgments would be
elicited through preferences, and this would involve
two different psychological mechanisms. Also, it does
not require total precision on behalf of the special-
ist, and there are no errors to be treated statistically.
The method uses paired comparative probabilistic as-
sertions involving intervals of θ values, and the choice
of the events (intervals of θ values) for the paired com-
parisons and the paired comparisons themselves (the
items in the questionnaire), are made according to
new constructs that are introduced here. More mate-
rial on these sorts of ideas may be found in references
[4] to [13].

2 The Method

The general method is introduced in [13], but let us
briefly describe it here. For the elicitation procedure,
the first assumption in the development of the method
is that the specialist has an incomplete knowledge
about the probability distribution on θ, i.e., about
the prior distribution π(θ). More specifically, it is
assumed that the specialist can make only finitely
many comparative probabilistic assertions in answer
to questions about the likelihood of θ belonging to one
of two given intervals. The basis for such assumption
are the feasibility of a reasonable protocol (question-
naire), and the natural limitations of human beings.
Thus, the specialist can have his or her prior knowl-
edge represented by a family of probability distribu-
tions containing a distribution that is stochastically
“larger” than all the other distributions compatible
with the answers that were given, and also by a dis-
tribution that is stochastically “smaller” than all the
others. This family of distributions would be formed
by the set of all convex combinations of the two cited
distributions. The extreme distributions are equiva-
lent to a minimum (maximum) expected value prob-
ability distribution.



Initially, an elicitation questionnaire has to be set
up. Consider the case of a continuous real parame-
ter. First, minimum and maximum plausible values
for θ (that is, θmin and θmax) have to be established in
such a way that the probability that the true value of
θ lies outside these two limits is zero. Those bounds
should be specified by the specialist. It is necessary
that, without loss of generality, the probability that θ
belongs to any subinterval of the interval [θmin,θmax]
should be different from zero. Then, the probability
that θ belongs to this interval is equal to one. Inside
this interval, θ is distributed according to an unknown
probability density π(θ). The interval [θmin,θmax] is
partitioned into 2n subintervals of equal Lebesgue
measure, [θj−1, θj) , j = 1, 2, ..., 2n − 1; [θ2n−1, θ2n].
Define also πj = Pr{θ ∈ [θj−1, θj)}, the probability
that θ belongs to the jth subinterval. The probability
that θ belongs to the interval [θj , θj+k) is

∑k
i=1 πj+i.

It is clear that
∑2n

j=1 πj = 1.

The questions posed to the specialist are of the fol-
lowing type: Which one is greater than the other,

Pr{θ ∈ [θi−1, θi)
⋃

[θi, θi+1)
⋃

...
⋃

[θi+k, θi+k+1)} or

Pr{θ ∈ [θs−1, θs)
⋃

[θs, θs+1)
⋃

...
⋃

[θs+m, θs+m+1)}?

There will be, then, three possibilities for the answer
to each question: greater than, less than, or blank
(if the expert cannot compare the two intervals). An
answer “equal to” is not considered since this would
require from the expert an infinite precision.

The superposition of intervals may cause confusion, so
one should formulate questions so that i+k+1 ≤ s−1,
and i < s. The first few questions should be the eas-
iest ones, i.e., those involving events that are easily
separable as far as their probabilities are concerned
(they would involve larger intervals). The first ques-
tion will be then: Which one is greater,

Pr{θ ∈ [θ0, θ1)
⋃

[θ1, θ2)
⋃

...
⋃

[θn−1, θn)} or

Pr{θ ∈ [θn, θn+1)
⋃

[θn+1, θn+2)
⋃

...
⋃

[θ2n−1, θ2n]}?

The intervals are, then, progressively refined. The
questions should not be repeated in order to avoid
mnemonic “anchoring” effects.

Let IA and IB be two given intervals. One could
also ask the expert if, besides stating that, say,
P (θ ∈ IA) − P (θ ∈ IB) ≤ 0, he or she could
also specify positive numbers aA and aB such that
aAP (θ ∈ IA)− aBP (θ ∈ IB) ≤ 0.

Having done the above, the following linear program-
ming (LP) problems are posed:

Maxπj (Min)

2n
∑

j=1

cjπj (1)

subject to:

aik

k
∑

j=i

πj − alm

m
∑

j=l

πj ≤ 0 (2)

(or ≥ 0, depending on the specialist′s answer)

where k < l, aik > 0, alm > 0;

αjπj ≤ πj+1, j = 1, 2, ..., 2n− 1, αj > 0 (3)

βjπj+1 ≤ πj , j = 1, 2, ..., 2n− 1, βj > 0 (4)

πj ≥ 0, j = 1, 2, ..., 2n (5)

2n
∑

j=1

πj = 1 (6)

The input from the specialist consists, then, in an-
swering a certain number of pairwise comparisons of
the probabilities of events, and also to express the
relative odds.

In restrictions 3 and 4, αj and βj could be chosen in
such a way as to maximize the entropy of the distri-
bution π on θ, subject to the restrictions representing
the specialist’s answers. That is, outside the partial
prior information available, it is desired sometimes, as
exposed in [4], to use a prior that is as uninformative
as possible. If that is not desired, one needs only to
suppress restrictions 3 and 4.

If it is desirable to get all the probability distribu-
tions consistent with the elicited responses, it would
be necessary to solve many LP problems where each
cj would be randomly chosen according to a uniform
distribution. Or to use any technique to obtain the
set of all feasible π′js.

If it is desirable to get the distribution with the small-
est average value, and the one with the greatest aver-
age value, but consistent with the specialist’s answers,
then one should set cj = 2n− j + 1.

In order to concentrate on the main point, concern-
ing the choice of the intervals for paired comparisons,
and the assemblage of the questionnaire, we will con-
sider cj = 2n − j + 1, aik = alm = 1 in all paired
comparisons, and suppress restrictions 3 and 4.



If the specialist could not make a certain paired com-
parison, the corresponding restriction in expression 2
would be suppressed. If the expert can answer only a
few questions, leaving blank most of them, he or she
will be in a state of near-ignorance.

If the feasible set of the LP problems turns out to be
empty, this means that the specialist is inconsistent.

The common feasible set of these LP problems is de-
fined by the specialist answers and the conditions that
guarantee {πj}

2n
j=1 to be a probability distribution.

Clearly there is a limit for the perception (precision)
of the specialist, so the lengths of the intervals should
not be too small. In fact, the specialist should state
when his or her limit of precision is reached and no
longer can comparisons be made. If the feasible set
turns out to be empty, that is, if his or her answers
are inconsistent, the specialist should redo the ques-
tionnaire and stop after having answered questions of
a coarser level immediately before the one he or she
initially answered. Or the refined questions should
be progressively suppressed until the feasibility of the
LP problems is reached. The process is interactive.
In any case at a certain coarseness he or she stops.

The specialist’s answers will form the so called tech-
nological matrix of the two LP problems. If the indi-
vidual’s knowledge is very good, that is to say, if he
or she is very precise, the two LP problems will tend
to have the same answer, but in general the answers
will be different, since there is always vagueness in
an individual’s knowledge. One will get then two dis-
tributions, and any convex combination of them will
be feasible. The family of distributions thus obtained
will be consistent with the answers of the specialist.

Typically, we will have two probability distributions
and the new constructs will be defined in terms of
these distribution functions.

2.1 Notation

Parameter (State of Nature): it is represented by
θ; it is the “expert inner random variable” (de dicto)
whose probability distribution will be elicited from
the expert himself or herself. It is assumed that θ
belongs to a finite closed interval of real numbers.

Parameter Space: Θ = {θ} = [θmin, θmax].

Elementary Interval: It is represented by εj =
[θj−1, θj), j = 1, 2, ...2n, where the Lebesgue measure
of each one of them will be given by (θmax−θmin)/2n.
(Rigorously the last elementary interval would be
[θ2n−1, θ2n] = [θ2n−1, θmax], but since θ is a contin-
uous variable, Pr{θ = θmax = θ2n} = 0, and so the
convenience of the notation will be maintained).

Note that θmin = θo e θmax = θ2n.

Partition of the Parameter Space: It is repre-
sented by ℘ = {εj}, j = 1, 2, 3, .., 2n.

Interval: It is represented by I(k,m) =
m
⋃

j=k

εj =

m
⋃

j=k

[θj−1, θj), k ≤ m, that is, it is the union of con-

tiguous elementary intervals.

Pairs of Intervals (also denominated Ques-
tions): They are represented by P (k,m, s, u) =

{IA(k,m), IB(s, u)} = {
m
⋃

j=k

[θj−1, θj),
u
⋃

j=s

[θj−1, θj)},

for 1 ≤ k ≤ m < s ≤ u ≤ 2n. The set of all such ques-
tions is represented by Ψ = {P (k,m, s, u)}. For sim-
plicity of notation the question involving the smaller
values of θ (the left side of the questionnaire) will be
represented by IA, and the one involving the larger
values of θ will be denoted by IB (the right side of
the questionnaire). Note that IA ∩ IB = ∅.

Questionnaire: It is represented by Q =
{Pi(k,m, s, u)}, for i = 1, 2, 3, ..., q, where
Pi(k,m, s, u) is a question, as defined above. It
is composed, of course, of distinct questions. Note
that Q ⊂ Ψ.

3 Vagueness and Precision

The distribution functions on θ, Πmax and Πmin, are
easily constructed from the solutions of the respective
LP problems. For any {πj}

2n
j=1, Πj =

∑j
i=1 πi. If one

thinks about the graphs of these two functions, it is
clear that an area will form between the two curves.
The ratio of this area to the total area [θmax − θmin]×1
of the rectangle was defined in [1] as the vagueness,
V , of the specialist. That is,

V =
1

2n

2n
∑

j=1

|Πmax(θj)−Πmin(θj)| . (7)

In [1] this concept is generalized for the case of multi-
ple experts, and in [2] and [13] this construct is related
to other constructs.

Clearly, 0 ≤ V ≤ 1. If the specialist answers consis-
tently to all the probability comparability questions,
his vagueness will be minimal. It will depend only
on the questionnaire itself, that is, on the number
and choice of questions. The smaller the number of
consistent questions, the greater the vagueness of the
specialist. If the expert cannot answer any question at
all, his or her vagueness will be one. He or she will be
in a state of total ignorance. In this case, the family



would consist of all possible probability distributions
on θ.

The more vague the specialist is, the less will be its
precision, P , and so:

P = 1− V. (8)

The constructs defined above could be redefined in
local terms. It is necessary just to compute them
in a predefined region of the parameter space. It is
possible then to search for problematic regions as far
as vagueness or precision is concerned. This type of
analysis may be useful in identifying some specific in-
adequacy of the specialist’s knowledge or his or her
difficulty in expressing it. The region could be just
one elementary interval, and then it is possible to es-
tablish functions for these constructs, having as argu-
ments the θ′js themselves.

4 Indicators for the Construction of

the Elicitation Questionnaire

Two objectives were set for the elicitation question-
naire.

First to permit and guarantee the expert’s gradual
and smoothly progressive perception of the parameter
(state of nature), distributed along the questionnaire.
This should be achieved through an increasing of the
levels of refinements (decreasing of the coarseness) of
the comparability questions so as to avoid retroces-
sion to lower levels already answered. One should try
not to confound the specialist with reasoning retro-
cessions.

Secondly, to permit and guarantee a uniformity of pre-
sentation to the expert of the state of nature’s elemen-
tary intervals distributed along the questionnaire, in
such a way as to provide the same choice chance for all
εj . It should be considered here that such uniformity
takes into account the fact that the judgment is not
based upon preferences but in a degree of belief based
on a priori knowledge. One tries then not to con-
fuse the expert with a non equitable presentation of
elementary intervals. The questionnaire should avoid
inducing any bias. It should be neutral. It has to be
able to elicite all sorts of distribution.

In setting these two objectives the expert is considered
exclusively as a judge facing the alternatives presented
to him.

Also, the number of questions should not be too large
in order to avoid the fatigue of the expert. Even if
the whole interval is divided in a small number of ele-
mentary intervals, say, 10 of them, to make all possible

comparisons is out of question.

4.1 Question and Elementary Interval
Detailing Indicators

To guide the designer in achieving the first objective,
a “question detailing indicator”, DPi

, is presented. It
will guarantee the “local receptivity”, i.e., for each
question.

For guidance as far as the second objective is con-
cerned, an “elementary interval detailing indicator”,
Dεj , is presented. It will guarantee the “global re-
ceptivity”, i.e., for each questionnaire (or part of a
questionnaire).

4.2 The Quality of the Questionnaire

First, the symmetry of the questionnaire should be
guaranteed. It has to be able to accommodate any
distribution shape. If it is not symmetric it could
introduce an artificial tail. That is, if the question
P (k,m, s, u) was presented to the expert, then the
question P (2n− u, 2n− s, 2n−m, 2n− k) must also
be presented.

To start the construction of the detailing indicators,
a basic detailing indicator, di,j , is used. It is defined
by:

di,j = 1 if, in Pi, εj ∈ IA ∪ IB ; di,j = 0, otherwise.

The counting indicator for the question will then be
defined by

dPi
=
∑

j

di,j (9)

and the elementary interval counting indicator by

dεj =
∑

i

di,j (10)

dPi
is the number of elementary intervals that appears

in question i.

dεj corresponds to the number of questions in which
appears the elementary interval εj .

The questionnaire can be viewed as a (q× 2n) matrix
whose elements are either 0 or 1.

It is intuitive that the difficulty the expert has in
deciding which interval is more likely depends upon
the absolute and relative size of these intervals as
well as upon the gaps remaining in the overall in-
terval. The problem should be treated then in the
two-dimensional space.



Consider then the square

[θmin, θmax]× [θmin, θmax] = [θ0, θ2n]× [θ0, θ2n].

which will have the partition ℘×℘, with 4n2 squared
elements with sides measuring (θj − θj−1). These ele-
ments will have as “coordinates” the pairs (x, y), for
x, y = 1, 2, 3, ..., 2n. The x axis will correspond to the
interval IA and the y axis to the IB interval. The com-
parability questions will be then connected unions of
elements of ℘ × ℘. They will be convex sets (rectan-
gles).

Since IA ∩ IB = ∅, and IA is in the left side of the
questionnaire, the feasible questions will correspond
to the small squares located in the region delimited
by the “coordinates” (1, 2), (1, 2n), and (2n− 1, 2n).
The squares in the diagonal are forbidden.

The number of elementary squares in this region is
given by

N =
[(2n− 1) + 1] (2n− 1)

2
= n(2n− 1) (11)

These elementary squares work as pixels, defining the
“resolution” of the questionnaire, which will be given
then by 1/N . The discernment capability of the ex-
pert can be measured also by the size of the smallest
elementary interval appearing in a question that he or
she can answer consistently with the previous easier
ones.

The overall interval [θ0, θ2n] can be normalized so that
[θ2n − θ0] = 1. Thus, each elementary square will
measure (1/2n)× (1/2n).

The area of the feasible region for constructing ques-
tions will be then

A2n = n(2n− 1)×
1

(2n)2
(12)

The area of each question Pi will be given by

APi
= (m− k + 1)× (u− s+ 1)×

1

(2n)2
(13)

where 1 ≤ k ≤ m < s ≤ u ≤ 2n. The greater the area
of the question the easier it will be for the specialist
to answer it.

Consider the two particular cases below.

Case 1: k = 1, m = n, s = n+ 1, u = 2n. For this
case,

Acase1 =
(n−1+1)(2n− n−1+1)

(2n)2 = n2

4n2 = 0.25.

Case 2: m = k, s = u. For this case,

Acase2 = (2n)
−2 = Aε.

The simplest (easiest) question that could be made is

Pi = {
m
⋃

j=k

εj ,
u
⋃

j=s

εj} (14)

where 1 ≤ k ≤ m < s ≤ u ≤ 2n, in the conditions of
Case 1. This question compares the two halves of the
overall interval. If, in the expert mind, the probability
distribution is symmetric, any answer will be good.
If it is not symmetric, any expert with a minimum
knowledge about the underlying subject will have no
difficulty in asserting which one of the halves has more
probabilistic mass. The number of squares of this
easiest question will be denoted by Nn. This question
will be considered as defining the zero of the scale for
DPi

.

The less simple question that could be made is the
one expressed by (12) in the conditions of Case 2.
It compares two elementary intervals. The number of
squares of this easiest question will be denoted by N1.
This question will be considered as defining the max-
imum of the scale, since it will be the most difficult
question to answer, and DPi

will have assigned the
value 1 corresponding to it.

The question detailing indicator for question Pi will
be then defined by:

DPi
= A2n

Acase1−Acase2

[(

1−
Api

A2n

)

−
(

1− Acase1

A2n

)]

DPi
=

n(2n−1)

(2n)2

n2

(2n)2
− 1

(2n)2

[

n2

(2n)2

n(2n−1)

(2n)2

−
(m−k+1) (u−s+1)

(2n)2

n(2n−1)

(2n)2

]

DPi
=

n2 − (m− k + 1)(u− s+ 1)

n2 − 1
(15)

It follows from the definition that 0 ≤ DPi
≤ 1.

Observe also that (m − k + 1) × (u − s + 1) is the
number of elementary squares representing the ques-
tion Pi and that no question will have more than n

2

elementary squares.

So, NPi
= (m−k+1)×(u−s+1), NPi

∈ {1, 2, ..., n2},
and DPi

will be given by:

DPi
=

n2 − NPi

n2 − 1
(16)



The elementary interval detailing indicator will be de-
fined by:

Dεj =

q
∑

i=1

(di,j ×DPi
) (17)

If Dεj is such that
Dεj

∑2n

k=1
Dεk

=
Dεl

∑2n

k=1
Dεk

, for all

j, l = 1, 2, 3, ..., 2n, then the questionnaire is well bal-
anced. All the D′εjs will be equal, i.e., the question
detailing indicator of all questions will be evenly dis-
tributed along all the elementary intervals. If they
are normalized to 1 they will constitute a maximum
entropy probability distribution over the 2n states of
nature θ′js (not related to the specialist’s knowledge,
of course).

5 A Questionnaire Designed using

the Question Detailing Indicator

Using a trial and error approach, and following the
guidelines suggested above, the questionnaire shown
in Table 1 was designed. The total interval (from 0%
to 100%) was partitioned in 20 elementary intervals
and 42 questions were specified.

Starting from the 50%-50% question, the following
questions were constructed in such a way that DPi

would grow roughly linearly with i. A well adjusted
regression line of DPi

versus the question number i (1
to 42) has a determination coefficient of 0.98. This
can be observed in Table 1.

The D′εjs are such that the resulting entropy is
equal to 2.9924195, close to the maximum entropy
(log(20) = 2.99573227).

It is possible to set up a mathematical programming
problem in order to automatically design a question-
naire based on those guidelines. As inputs it would
have the number of elementary intervals (2n) and the
desired number of questions. The first question would
be the 50%-50% one. The questions should be chosen
in such a way as to obtain an as linear as possible
evolution of DPi

with i, and an even distribution of
the D′εjs along the overall interval (sample space).

6 A Practical Application of the

Questionnaire

The questionnaire was applied to a medical doctor
who is an experienced clinical cardiologist. The fol-
lowing evidence concerning an individual was pre-
sented to him: male, aged 49 years, weighting 95
kg, 1.75 m of height, Body Mass Index of 31kg/m2,

IA; IB Question Indicator
0-50; 50-100 0.00
0-40; 40-100 0.04
0-60; 60-100 0.04
0-65; 65-100 0.09
0-35; 35-100 0.09
0-70; 70-100 0.16
0-30; 30-100 0.16
0-45; 55-100 0.19
10-50; 50-100 0.20
0-50; 50-90 0.20
0-25; 25-100 0.25
0-75; 75-100 0.25
5-45; 55-100 0.28
0-45; 55-95 0.28
0-40; 60-100 0.36
10-45; 55-95 0.44
5-45; 55-90 0.44
25-75; 75-100 0.51
0-50; 50-75 0.51
25-50; 50-100 0.51
0-25; 50-100 0.51
0-50; 75-100 0.51
0-25; 25-75 0.51
0-45; 50-75 0.56
25-50; 55-100 0.56
0-40; 50-75 0.61
25-50; 60-100 0.61
0-40; 40-60 0.69
40-60; 60-100 0.69
40-80; 80-100 0.69
0-20; 40-80 0.69
25-50; 75-100 0.76
0-25; 25-50 0.76
25-50; 50-75 0.76
0-25; 50-75 0.76
0-25; 75-100 0.76
50-75; 75-100 0.76
30-50; 50-70 0.85
0-10; 70-100 0.89
0-30; 90-100 0.89
20-30; 70-80 0.97
0-10; 90-100 0.97

Table 1: The designed elicitation questionnaire.



US$ 1,300.00 monthly salary, civil engineer, works in
a construction firm, has no health complaints, is a
nonsmoker, and was randomly chosen amongst all in-
dividuals in his city with similar characteristics. The
questions concerned the systolic blood pressure of this
individual. A minimum of 90 mm Hg and a maximum
of 190 mm Hg were established. The questionnaire
presented to the cardiologist was the one elaborated
above, adding 90 to each entry in the intervals. The
following explanation was given in written form to the
cardiologist:

The questionnaire in annex pertains to
the probability distribution of the systolic
blood pressure (SBP) of the individual de-
scribed above. The available evidence, ex-
plicited in the ten items above, allows a car-
diologist to create an expectation as to what
that individual’s office SBP will be once it is
measured by a sphygmomanometer using the
protocol of the British Hypertension Society
(average of three measures, etc.). The elic-
itation protocol aims to translate the knowl-
edge and the experience of the cardiologist in
terms of a family of probability distributions
for the variable of interest, in this case, the
SBP.

The items in the questionnaire in annex
are all comparisons between the probabilities
of the SBP being in one or the other of two
intervals. The first question, for instance,
is the following: What is more likely, that
this individual’s SBP is between 90 mm Hg
and 140 mm Hg, or that it is between 140
mm Hg and 190 mm Hg? If the cardiologist
feels that it is more probable that the SBP is
within the first interval, he should mark an
“×” on column X1, otherwise, “×” should
be marked on column X2.

It is important to note that one is not
asking what is the interval where the “true”
SBP is, for it can actually be in either one or
the other. Even with multiple measurements
using the sphygmomanometer, or with any
other instrument, one will never know for
sure. One does not know, but the evidence
that is presented allows for an idea of the
most probable side.

He answered all the questions except the last one.
He asked for more evidence (family antecedents) in
order to feel able to answer it. No more evidence was
provided and so he left it blank. His answers were
consistent, and the vagueness was 13.75%. Denoting
by 1 when he asserted the first interval to be more

probable and 0 the other way around, the answers
were: 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0,
0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1,
1, blank. The graph in Figure 1 shows the results.

Figure 1: The results of the elicitation.

7 Summary and Conclusions

The method presented here for calculating and repre-
senting uncertainty in the epistemic case is compat-
ible with several views of the concept of probability.
Betting schemes are avoided, and so the psychologi-
cal mechanisms of preference do not interfere in the
elicitation; the specialist is only asked to make com-
parisons. It avoids the Bayesian dogma of precision
by allowing a range of possible distributions for the
parameter. The specialist is not forced to give precise
answers. There is no need for statistical or sensitivity
analysis.

A question detailing indicator and an elementary in-
terval detailing indicator permitted the elaboration
of a questionnaire consisting of paired comparisons of
the probabilities of events.

By its very structure the method provides a natural
way for the construction of a convex family of prob-
ability distributions compatible with the evidence
available to the specialist and translated through his
answers to the questionnaire. The introduced con-
cepts of vagueness and precision permit a thoroughly
evaluation of the elicitation procedure.



The method is practical, and easily implementable.
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