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Abstract essence of the theory and see possible ways of its develop-

The natural extension, the key concept for the construc—ment and implementation.

tion of coherent imprecise models, can appear in differentThe current paper concerns four forms of the natural ex-

equivalent forms. Each of them has pros and cons in theéension representation. It is demonstrated that all of them

context of specific applications. The use of a proper formare equivalent and one, discussed in the last instance, is
can substantially facilitate the inference and computationprominent solely for gambles defined on continuous pos-

of the previsions of interest. sibility sets. It is proven that the solution of the natural

extension problem for continuous gambles exists on the
The current paper concerns four forms of the natural ex- o R

. ; . degenerate distributions. In order to distinguish between
tension representation. It is demonstrated that all of the

. ; . . Mhe different forms of the natural extension one of them is
are equivalent and one, discussed in the last instance, is

. . . referred to as "the primal form” (analogously to the ter-
prominent solely for gambles defined on continuous POS- . oloav used in linear and non-linear brodrammin ): the
sibility sets. It is proven that the solution of the natural 9y brog 9,

: ) . second one is called "Kuznetsov’s form” (first appeared
extension problem for continuous gambles exists on the - ) ;
SR o . in the book [5]) and it will be easy to see that this form is

degenerate distributions. Partial information and a charac- . : S
st a different notation for the dual optimization program-

s . u
teristic to be calculated can be thogght as the expec'Fa_Up n%nng problem; the third representation is called "Walley’s
of some real-valued functions defined on the possibility

space. As they are expectations, they can be express ef rm” [9] which is probably best fitting into the behavioral

X . . . interpretation; and the fourth one is referred to as "the de-
as functions of probability density functions and proper »
real-valued functions (gambles). Each piece of the partialgenerate form”™
information acts as a constraint to the probability distrib- Informally, the problem of the natural extension for a one-
utions. All together the constraints define the area of alldimensional case can be formulated as follows: one has
distributions over which the interval of the desired statisti- some partial information on a probabilistic parameter)
cal characteristic will be searched. Throughout the papeland is interested in the value of some other probabilistic
the natural extension is analyzed through the prism of re<characteristics. We define partial information as evidence
liability application. which imposes constraints to the set of possible probabil-
ity distributions without narrowing it to a single (precise)
Keywords. Imprecise probability theory, imprecise relia- distribution. Since the given information is partial, we do
bility, natural extension, previsions. not expect precise numbers but we would like to know an
interval of possible values of a desired characteristic.

1 Introduction This definition of partial information assumes that some

evidence can be precisely known but characterizing only,
Having tried to implement the theory of coherent impre- for example, some events on the possibility space, and, as
cise previsions into practices related to reliability analysisa consequence, the probability distribution is not known
we found that the natural extension, the key concept forcompletely but partially. Some evidence can be of interval-
the construction of coherent models, can appear in differ-valued or comparative form. There may be direct evidence
ent equivalent forms. Each of them has pros and cons iron a class of distributions etc.

the context of spe_cmc app_llcanons._ The use of a propen, 555yme that partial information and a characteristic to
form can substantially facilitate the inference and COMPU-p,0, aiculated can be thought as the expectations of some

tation of the previsions of interest. The knowledge of dif- real-valued functions defined on the possibility space. As
ferent natural extension faces lets us understand better the



they are expectations, they can be expressed as functiorigiown precisely, one has to solve problem (1)-(3) and seek
of probability density functions and proper real-valued for the upper and lower bounds of the characteristic of in-
functions (gambles). Each piece of the partial informationterest. The solution of this problem is defined on the set of
acts as a constraint to the probability distributions. All possible densitie® that are consistent with partial infor-
together the constraints will define the area of all distri- mation expressed in the form of constraints (3). If one does
butions over which the interval of the desired statistical not have any information on probability characteristics de-
characteristic will be searched. fined on the possibility space or on the class of densities
‘P, then the seP is the largest and the solution is vacuous,
i.e. M(g) = infg(X) and M(g) = supg(X). Given
vidence reducing the s@, the interval[M (g), M(g)]
ecomes more narrow and different from the vacuous one.

Throughout the paper the natural extension will be an-
alyzed through the prism of reliability application high-
lighting our area of expertise. Nevertheless, the subject oﬁ
the paper is wider and not necessarily be boiled down to a
reliability analysis. Assume there is a comparative judgement "the prevision
of a gambley,(x;) does not exceed the prevision of a
gambles, (yi)". Herex; andy are the subvectors &.

2 Primal form - :
This judgement can be written as

Vi (xk)p(X)dX > - B (yx)p(X)dX

the natural extension only in the integral form tacitly as-

Without loss of generality we consider the primal form of /
suming that the discrete case can be easily written. R

T
Consider a system consisting af components. Let and act as an additional constraint to problem (1)-(3).

zr’%(:fé) tk;]eeii;lg:;gogn(:ntth"efer,?;céorzc\ggi?f’ t(l;o[rl]ext-he It should be noted that only joint densities are used in the
pie, the- P . ' : g ' optimization problem (1)-(3) because in a general case we
system lifetime can be uniquely determined by the compo- )
may not be aware whether the variabigs..., x,, are de-

nentlifetimes. Denot& = (1, ..., ). Then there exists pendent or not. If it is known that the components are in-
a functiong(X) of the components lifetimes characteriz- dependent, thep(X) — p(z1) - - - p(a). Here we use the

ing the system reliability behavior. The functiopg (z;) definition of independence in the sense of classical proba-

andg(X) can be regarded as gambles, where a gambl‘?)ility theory. In this case the s@t is reduced and consists

is a real-valued function on a possibility space Whoseonly of the densities that can be represented as a product.

value is uncertain [9, 5]. Suppose that partial informa- Lo .
L .. The optimization problem for computing a new lower pre-
tion is represented as a set of lower and upper previsions.

_ - ; vision is of the form:
Q5 = M(%J’(l’i)) anda;; = M(%j(l‘i)), t=1,..,n,
j =1,...,m;. Herem, is the number of judgements that i '
are related to thé-th component. In this case, the natural M(g) = I%f/ 9X)py (1) - pplan)dX,  (4)

S ) : R
extension in its primal form is *

_ subject to
M(g) = min / ~9(X)p(X)dX, 1) N
pi(wi) >0, / pi(z;)dx; =1,

AT 0

M(g) = myx [ g(X)p(X)aX, @

subject to a;; < /0 @i (wi)py(xi)dz; < @iz, i <n, j < my.
(5)
/n pX)AX =1, p(X) =0, In this case the problem becomes non-linear, which makes

" it more difficult to solve. However, some reliability prob-

lems can be easily solved by using the primal form.

a;; < /Rn pij(2i)p(X)dX < @iz, i <n, j <m;. (3) Example 1 Consider a series system consistingroin-
+ dependent components. A system is called series if its life-
Here the minimum and maximum are taken over the settmlrr]ig ?ﬁ;-g:vc%nmbygrgﬁ;}.I.if’egiir;rz e=[1r]rllﬁ§1,;,r;\;(¢;cyglgif§
P of all possiblen-dimensional density functiong(X)} ! b Coo e

satisfying conditions (3). Throughout the paper the natural™ M@"') be the Iower and upper mean times to fail-
. . . ure of thei-th component; = 1, ..., n. Moreover, suppose
extension will be written only for the lower bound.

that0 < z; < T,i=1,...,n. Letus find the lower mean
The natural extension in its primal form has an advan-time to failure of the systed/ (min;—,,... ,, ;). The opti-
tage of easy interpretation. If the distributip(iX) is not ~ mization problem for computing new lower prevision is of



he form: - .
fheform a;; < Z @ij(xgkl))P(X(K))AXK < @iy,
. . K=1
M(g) = 1%f/9m1n(:1:1, s Tp)p1 (1) - - pp(Tn)dX, i< mj<mi

subject to Here K = (ki,onkn), XU = (2{F) 2,

T AXg = Amﬁ’“) - Azt This is the linear program-
p;(z;) >0, / p;(zi)dx; =1, ming problem with finite number of variablggX (%)).

0

Therefore, we can write the dual optimization problem for

T computing the lower prevision as follows:
a; < / xip;(xi)dr; <a;, i < n.

0 n.om;

HereQ =[0,7] x ... x [0,T7. M*(g) = suIZl c+ ZZ (cijgij - dijaij) ,
6 Cij,aij i=1 j=1

According to [1], we can rewrite the objective function and

constraints as follows: subject toc;; € Ry, d;; € Ry, c € RandvXH) >0

T
Mlg)= [ Fi@)- Euo)e 38 e — o (25) < 6K

. . . i=1 j=1
whereF; (z) is the lower survivor function of thieth com- R

. . T
ponent lifetime such thaf, F';(x)dz = a;. As it is seen, the density functions are not variables any-

By using Chebyshev’s inequality, we have more. By using the passage to limit@axx AXx — 0,
we obtain the following problem:

T n 1 T
0 =1 i=170 M(g) = sup c+ ZZ (Cq:jQij - dijaij) , (6)

Hence minimally coherent solution is &:eigrdiy

i=1 j=1

1 & subject toc;; € R, d;; € RT,c€ RandvX >0
M(g) = Tl HQY‘» ’ ’
=1

n m;

c+ Y ey — dig)pi (@) < g(X). (7
3 Kuznetsov's and Walley’s forms i=1j=1

Problem (1)-(3) has infinitely many variables and it can Problem (6)-(7) can be rewritten in another form:
hardly be solved directly. However, we can apply some

known tricks that help solve these problems. One of the

pivotal tools in linear programming is the concept of du- M(g) = e | € t Z ZC”% ’ (8)
ality. According to the duality theorem (see, for example, ‘ ==t

[6_]) the minimum in thg abqve-stated problem coir]cid_es subject to;; € R, ¢ € R andvX > 0

with the maximum attained in the dual problem which in

many cases is much easier to solve. nom

C+chij%j($i) < 9(X), 9)

i=1 j=1

n m;

The transition from the primal problem to the dual one re-

ceives coverage in the literature only for the discrete case.

In employing the discrete results we will demonstrate thewhere

transition to the dual problem for the continuous case. a;; = { %ij? Cij 2 8

Let us rewrite problem (1)-(3) in the form of finite differ- i G <

ence Thus, we have arrived at the natural extension in
n Kuznetsov’'s form [5] which is valid for both continuous

M*(g) =inf Y g(XF))p(XF)AX, and discrete case.

K=1

The natural extension in the dual (Kuznetsov’s) form of a
subject to linear optimization problem is a constructive tool and al-
lows us to solve various applied problems. As a matter of
p(X(K)) >0, p(X(K))AXK —1, fgct, most of analytical results obtained in reliability gnaly—
sis by the authors of the current paper have been inferred



owing to the dual form of the natural extension. However, is the probability that time to failure belongs {6, o),
this representation has some limitations. For instance, inthen it could be written ad/ (I}, ..)(x)), wherez is time
dependence relationships cannot be introduced to the duab failure). There is no information about the indepen-
form since it is valid only for linear programming prob- dence of the components. Let us find the lower reliability

lems. On the contrary, independence relationships can bef the system\/ (I, .. (min;—1, ...

n;)). It follows from

easily introduced through the primal form at the cost of (8)-(9) that

having a non-linear optimization problem.

Suppose only the lower previsions(p;; (7)) = a
1,.n, j=1,..,
gambles

7/%‘;‘ (z4)

ijr v =

= ‘Pij(wi) - M(%](%)) = %‘j(xi) — Q-

They are called almost desirable gambles [9] or centered

gambles [5]. Then (¢,;) = 0 and we can rewrite prob-
lem (6)-(7) as follows:

M(g) = sup C+Zi0ijM¢ )

G:Cij i=1 j=1

=supe, (10)

subject toc;; € R, ¢ € R and
¢+ chij%j(iﬂi) < g(X), VX > 0.
i=1 j=1

Let us represent constraints as

762271:% cijtby; (i), VX > 0.

(11)

Optimization problem (10)-(11) can be written in the dif-

ferent form

n  m;

)—c=> chij%g‘(f

i=1 j=1

M(g) =sup c:g(X

12)
If only the upper previsionﬂ(gp” (x;)) = @;; are known,
thenvX > 0,

X) —c< ZZCU¢”($2) )

i=1 j=1
(13)

M(g)=inf¢c:g

where

by (i) = M (i (2:) — (i) = @iy — i5(4).

m;, are known. Let us introduce new

M(I[t’w)(_ r{nn x;)) = sup <c+ chm) ,

C,C; i=1

subjecttoc; € R,c € RandvX > 0

n

C+Zcz t,00 (xz)<I[too)( mln xz)

1=1

It can be seen from the constraints that the set of
all values ofz; can be divided into to subsef$,t)

and [t,00). If z; € [0,t), then I y(z;) = 0
and I o) (ming—1, .. n ;) = 0. Note that
I, oo)(mlnz Loomm) = 1if z; € [t,00) for all

1 = 1,..,n. So, the constraints can be rewritten as

foIIows.

n}, c—&-ZcZ-gl, c<0.
i=1

c—i—Zci <0, Jc{y,..
icJ

Let us show that the optimal solution is achieved:py>
0,k =1,.,n. If (¢,c1,...,cp) is a feasible solution
andc; < 0, then(e, ¢q, ..., O, ..., ¢,) is @ feasible solution
corresponding to a greater value of the objective function.

Indeed .
c+ Z C; S 0.
i=1,i#k
This implies that;, > 0 and most of the constraints result
from the following ones:

n n
c+ Z ci§0,i§n,c+20i§1,c§0.
j=1,5#i i=1

Now we can writd) < ¢; < 1,4 = 1,...,n. This implies
thatec < —(n —1)if¢; = lande < 0if¢; = 0,4 =
1,...,n. Then

M(Ip, oo)( mln z;))

N

max(Za —(n—1), )

Representations (12) and (13) are nothing else than thd Degenerate form

natural extension in Walley’s form.

Example 2 Consider a series system consisting 1of
components. Let, = M(Iy)(z;)) and @; =

M (I} o) (2:)) be the lower and upper reliabilities at time

t of thei-th component, = 1, ..., n. (As the reliability of a
component/system within a predefined time intefoa)

In reliability calculations one primarily has to deal with
continuous gambles, for example, time to failyre) = ¢,

i.e. the constraints in the natural extension must be satis-
fied for all valuest of these gambles. This implies that
the optimization problem has to be solved for the infinite
number of constraints or variables. In some special cases



it is possible to overcome this difficulty. However, gener- Theorem 2 If an optimal solution of optimization prob-

ally this fact makes the optimization problems difficult to lem (4)-(5) exists, then it can be found in the class of de-

solve directly. Therefore, some findings and developmentgyenerate densities

are necessary. One of the ways is to use the Dirac func-

tions which have unit area concentrated in the immediate i (k)

vicinity of some point. In this case the infinite dimensional Z 0 m

optimization problem is reduced to a problem with a fi-

nite number of variables equal to the number of constraints

(pieces of evidence) plus gne In the case of employing the herexk € Ry, CJ e R.;.. (For the proof see Appen-
dix.)

Dirac functions, the optimization problem, unfortunately,

becomes non-linear. It should be noted however, the nat:

ural extension for a system with independent component

is a non-linear programming problem anyway. Thus, this

Ck=1,...n, (17)

By substituting the degenerate class of densities (17) into
bjective function (4) and constraints (5) we obtain

approach is especially efficient under the condition of in- mi+l  ma+1 n
dependent components and continuous gambles. M(g) = inf Sy gz 2l 11 a”,
It should be noted that the Dirac functions have been con- =l =t v=t
sidered in [2] as an optimal solution to the optimization subject to
problem of preventive maintenance under incomplete in-
formation. However, there were studied only some special mutl
ial initial i i ; Zc(l)zl D>01=1,..,n
cases of patrtial initial information. Here we consider a k » G Z Y ) 1
general case fitting the framework of the theory of coher- k=1
ent imprecise probabilities. ——
. . R . 71J—Z§0m (l) )<a2JvZ<n.7<mz
Theorem 1 If an optimal solution of optimization prob-
lem (1)-(3) exists, then it can be found in the class of de-
generate densities The three forms, primal, dual and Walley’s, have been re-
peatedly employed by the authors for generalizing differ-
N+1 ent reliability measures, models and approaches to coher-
Z crox, (X Zml (14)  entinterval-valued probabilities [3, 4, 7, 8]. The degener-

ate form of the natural extension has not been used until
now in any reliability modelling. An example below is a
whereX;, = (mgk), :cg“)) € R, ¢, € Ry. (Forthe  finding that contributes to the generalization of reliability
proof see Appendix.) models and demonstrates how the degenerate form can be
used and analytical expressions can be inferred.
By substituting the degenerate class of densities (14) into
objective function (1) and constraints (3) we obtain Example 3 on how the degenerate form of the natural ex-
tension can be used in computing the stress-strength reli-
ability under incomplete information. L&t be a random

inf Ni:l crg(Xn), (15) variable desc_ribing the ;trgngth of a system andXebe
e, Xk a random variable describing the stress or load placed on
- the system. Then the stress-strength reliability of the sys-
subject to tem is determined aB = Pr{X < Y}. Assume that the
probability distribution functions of the independent stress
N4l and strength are given as non-parametric functions and
o = L>0k=1,.,N+1, (16)  quantified by precise probabilities. That is
N+1 Pr{X < a;}=p; Pr{Y <§;} =g,
4; = ZCWU ) <@y, i<n j<m i = 1,..mi, j=1,..,mo,
where
We refer to the natural extension (15)-(16) as the degen-
erate form. Problem (15)-(16) is valid for a case when we a1 <@ < Sy, By S0y S < By,
are ignorant of whether the components in a system are de-
pendent or not. For independent components the following o = 0<pi<po< <Py < Prsr =1,
theorem can be formulated:
0 = 0<¢1<¢<..<@Gny <gmyt1 =1



We are interested in finding the lower bouRaf R. There
are two random variables andY (n = 2) andm;+
my previsions:p; andg;, 1 = 1,...,mq, j = 1,...,ma.

Note that the objective function (18) achieves its minimum
ifforall £ < mj+1andj < my+1there hold/|y ) (y;—
zr) = 0. However, there exist valugsand k such that

By using the degenerate form of the natural extension thel|y . (y;—xx) = 1 for arbitrary values ofy;, z. Letj(k)

following problem can be stated

mi+1ma+1
R=inf > 3" Ijg o) (y; — wx)crd;, (18)
k=1 j=1
subject to
mi1+1 mao+1
doa=1, ) d;i=1, (19)
k=1 j=1
mi+1
Z I[O,(yk](xi)ci = pr, k=1,...,m, (20)
i=1
mo+1
Qj, ] = 1,...,m2.

Z I[o,ﬁj](yi)di =
i=1

Here the infimum is taken over the set of variabtgsy;,
c,d; € Ry, i =1,..,my, j = 1,...,my, satisfying
constraints (19)-(20). Assume that

1 S22 < o S Tmyt1, Y1 S Y2 S S Yot

Let us prove that for all possiblg, the following condi-
tionsxy, € [ag—1, k], yr € [Br_1, 0] for optimal values
of z, andy, are valid. Hereny = 0, 5, = 0, apm, +1 = A4,
Bm,+1 = B. Inparticular, A — oo, B — oo. Suppose
that there are two optimal values of andz;, such that
zj € [ag—1,04) andxy € [ag_1,ax]. If j < k, then it
follows from (20) that

c1+ ...+ Cji—1 =Pj-1, C1 + ...+ Cj—1 = DPj-

We have arrived at the contradiction. jJf > k, then it
follows from (20) that

c1+...+¢ =pk, C1+ ... +¢; =Dpj.

be a minimal index such that there hatd € [a;_1, o],
Uit € Biy-1,Fiml ar < Bjg- Thenlp o) (y; —
xy) = 1forall j > j(k) + 1. This implies that

mi1+1 ma+1

> 2 ads
k=1 j=j(k)+1
mi1+1 ma+1

S0 e —pe-1)(g —gi-1)

k=1 j=j(k)+1

R

It follows fromy""7"2 0 (¢; — ;1) = 1 — ;) that

mi

R=> (e —pr-1)(1 = gjny)-
k=1

5 Concluding remarks

The degenerate form of the natural extension, apart from
its applied value, sheds quite some light to the understand-
ing of what imprecise previsions really are. They are an
ultimate case of coherent interval-valued previsions which
can be seen as a rough modelling with ignoring evidence
in some cases. When applying the natural extension, we
declare that the lower and upper previsions are sought over
the set of all possible probability distributions, i.e. the
widest class, which is really appealing. As it is clear, the
widest class includes the class of the degenerate distribu-
tions that are a very particular and practically unrealistic
class of distributions. Degenerate distributions are mathe-
matical abstractions that can hardly anyhow satisfactorily
model any distribution used at least in reliability theory.
Yet, it turns out that coherent previsions exist just on this
class of distributions that we would really like to abstain
from involving. What evidence is ignored?

We have also arrived at the contradiction. Similarly, we FOr example, in reliability applications this is a fact that
obtain the contradiction for an arbitrary combination of the probability distribution of time to failure can hardly be
optimal values belonging to the same interval. This im- concentrated in a few specific points of the real line. Is not
plies thatz, € [ay_1, ;). The proof of the condition It @ reason that the pracuuoners_face the fact that interval
Yk € [B_1,B;] can be conducted in the same way. It §tat|st|cal models are t00 much'lmpremse to be employed
follows from these conditions and from (20) that in most practical studies and widely used? The evidence
that the probability distribution functions of time to fail-
ure must be smooth values differentiable at any point of
the real line is ignored. In many cases another evidence
is obvious: the probability distribution functions of time
to failure must exceed zero at any point over an interval
[0, T] except for the ending points. Can these evidence be
utilized through Walley’s and Kuznetsov's form of the nat-
ural extension and the concept of a gamble? One would
experience difficulty in doing this. Yet, this kind of evi-
dence and many others can be utilized through the primal

my
€1 =pi1, €1+ C2 =p2,..., E Ci = Pmaq>
i=1

ma
dl = q1, dl +d2 = Q27-"7Zdz‘ = Qms-
=1
Hence

Ck =Dk — Pk—1, dj = ¢ — qj—1, kK <my, j <ma.



form, which makes us think that the natural extension insubject to
its primal form is a more general tool for extending knowl-
edge. It gives us a possibility to involve a wider class of

/ JOWHM)At = a;, i =1,...,m,
evidence and judgements, which may be crucial for appli- 0

cations and may lead to obtaining more precise previsiongan be found in a class of degenerate distributions focus-
and reducing indeterminacy.
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Appendix

The proofs of Theorem 1 and 2 are based on two lemmas

Lemma 1 Suppose that functiong” (), i = 1,...,m
and g(t) are integrable on0,c0). Then an optimal so-
lution of the problem

z= mgx/o g(t)H (t)dt,

This implies that there are: jumps in the sequendery }.
If the last term of the sequenceas > 0, then there is the
(m 4+ 1)-th jump. Note thatn is independent of.. Then
the passage to the limit as— oo completes the proofm

Lemma 2 Suppose that functiong” (), i = 1,...,m
and g(t) are integrable on0, cc). Then an optimal so-
lution of the problem

z= mgx/o g(t)H (t)dt,



subject to

a; < / gOMH@)At <a;, i=1,...,m,
0

can be found in a class of degenerate distributions focus-
ing onm + 1 points. HereH (t) is a non-increasing func-
tion such thatH(¢t) > 0, H(0) = 1; ® is a set of all
possible functiong! () satisfying constraints.

Proof. We write a discrete optimization problem

n J

z = maxz ngo%

=0 k=0

subject to

n_J
<Y Y glan <@, i=1,..m,
j=0 k=0

ap >0, k=0,1,...,n,

as it has been done in the proof for Lemma 1. Let us
rewritem constraints in the matrix form < G - X < A,
whereG is a matrix with componentg,(j); X, AandA
are vectors with components;, a; anda;, respectively.
Let us fix such a vecto¥ thatA < Y < A. Then an
optimization problem with constraints - X = Y satis-
fies Lemma 1, i.e. the optimal solution hasnon-zero
components. Let the initial optimization problem has an
optimal solutionX*. Then there exist¥* = GX™* such
thatA < Y* < A. However, Lemma 1 implies that the
fixed vectorY* hasm non-zero components. This com-
pletes the proofm

Proof of Theorem 1.If we replace the variable by the
vector X, then the condition of Lemma 2 is not changed
and the optimal solution to the problem

z= max/ 9(X)H(X)dX,
¢ Jrn
subject to

a; < / ¢(X)H(X)dX <a;, i <N,
R'n.
T
is a n-dimensional distribution functiofd*(X) having
N + 1 jumps at pointsX;, = (z{*),...,2%), k < N.
Then
N+1

prX) = Oxy---Oxy ; crdx, (X),

wherecy, is a length of theé:-th jump.

Proof of Theorem 2. Let an optimal solution to the initial
problem bepi(xy) - - - pi (xy,). Letus fix allpf, i # E,
exceptp,,, k € {1,...,n}. We obtain an optimal solution

of the problem because the number of constraints for the
problem of one unknown densipy, is my.



