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Abstract

The natural extension, the key concept for the construc-
tion of coherent imprecise models, can appear in different
equivalent forms. Each of them has pros and cons in the
context of specific applications. The use of a proper form
can substantially facilitate the inference and computation
of the previsions of interest.

The current paper concerns four forms of the natural ex-
tension representation. It is demonstrated that all of them
are equivalent and one, discussed in the last instance, is
prominent solely for gambles defined on continuous pos-
sibility sets. It is proven that the solution of the natural
extension problem for continuous gambles exists on the
degenerate distributions. Partial information and a charac-
teristic to be calculated can be thought as the expectations
of some real-valued functions defined on the possibility
space. As they are expectations, they can be expressed
as functions of probability density functions and proper
real-valued functions (gambles). Each piece of the partial
information acts as a constraint to the probability distrib-
utions. All together the constraints define the area of all
distributions over which the interval of the desired statisti-
cal characteristic will be searched. Throughout the paper
the natural extension is analyzed through the prism of re-
liability application.

Keywords. Imprecise probability theory, imprecise relia-
bility, natural extension, previsions.

1 Introduction

Having tried to implement the theory of coherent impre-
cise previsions into practices related to reliability analysis
we found that the natural extension, the key concept for
the construction of coherent models, can appear in differ-
ent equivalent forms. Each of them has pros and cons in
the context of specific applications. The use of a proper
form can substantially facilitate the inference and compu-
tation of the previsions of interest. The knowledge of dif-
ferent natural extension faces lets us understand better the

essence of the theory and see possible ways of its develop-
ment and implementation.

The current paper concerns four forms of the natural ex-
tension representation. It is demonstrated that all of them
are equivalent and one, discussed in the last instance, is
prominent solely for gambles defined on continuous pos-
sibility sets. It is proven that the solution of the natural
extension problem for continuous gambles exists on the
degenerate distributions. In order to distinguish between
the different forms of the natural extension one of them is
referred to as ”the primal form” (analogously to the ter-
minology used in linear and non-linear programming); the
second one is called ”Kuznetsov’s form” (first appeared
in the book [5]) and it will be easy to see that this form is
just a different notation for the dual optimization program-
ming problem; the third representation is called ”Walley’s
form” [9] which is probably best fitting into the behavioral
interpretation; and the fourth one is referred to as ”the de-
generate form”.

Informally, the problem of the natural extension for a one-
dimensional case can be formulated as follows: one has
some partial information on a probabilistic parameterf(x)
and is interested in the value of some other probabilistic
characteristics. We define partial information as evidence
which imposes constraints to the set of possible probabil-
ity distributions without narrowing it to a single (precise)
distribution. Since the given information is partial, we do
not expect precise numbers but we would like to know an
interval of possible values of a desired characteristic.

This definition of partial information assumes that some
evidence can be precisely known but characterizing only,
for example, some events on the possibility space, and, as
a consequence, the probability distribution is not known
completely but partially. Some evidence can be of interval-
valued or comparative form. There may be direct evidence
on a class of distributions etc.

We assume that partial information and a characteristic to
be calculated can be thought as the expectations of some
real-valued functions defined on the possibility space. As



they are expectations, they can be expressed as functions
of probability density functions and proper real-valued
functions (gambles). Each piece of the partial information
acts as a constraint to the probability distributions. All
together the constraints will define the area of all distri-
butions over which the interval of the desired statistical
characteristic will be searched.

Throughout the paper the natural extension will be an-
alyzed through the prism of reliability application high-
lighting our area of expertise. Nevertheless, the subject of
the paper is wider and not necessarily be boiled down to a
reliability analysis.

2 Primal form

Without loss of generality we consider the primal form of
the natural extension only in the integral form tacitly as-
suming that the discrete case can be easily written.

Consider a system consisting ofn components. Let
ϕij(xi) be a function of the random variablexi, for ex-
ample, thei-th component lifetime. According to [1], the
system lifetime can be uniquely determined by the compo-
nent lifetimes. DenoteX = (x1, ..., xn). Then there exists
a functiong(X) of the components lifetimes characteriz-
ing the system reliability behavior. The functionsϕij(xi)
and g(X) can be regarded as gambles, where a gamble
is a real-valued function on a possibility space whose
value is uncertain [9, 5]. Suppose that partial informa-
tion is represented as a set of lower and upper previsions
aij = M(ϕij(xi)) andaij = M(ϕij(xi)), i = 1, ..., n,
j = 1, ...,mi. Heremi is the number of judgements that
are related to thei-th component. In this case, the natural
extension in its primal form is

M(g) = min
P

∫

Rn
+

g(X)ρ(X)dX, (1)

M(g) = max
P

∫

Rn
+

g(X)ρ(X)dX, (2)

subject to
∫

Rn
+

ρ(X)dX = 1, ρ(X) ≥ 0,

aij ≤
∫

Rn
+

ϕij(xi)ρ(X)dX ≤ aij , i ≤ n, j ≤ mi. (3)

Here the minimum and maximum are taken over the set
P of all possiblen-dimensional density functions{ρ(X)}
satisfying conditions (3). Throughout the paper the natural
extension will be written only for the lower bound.

The natural extension in its primal form has an advan-
tage of easy interpretation. If the distributionρ(X) is not

known precisely, one has to solve problem (1)-(3) and seek
for the upper and lower bounds of the characteristic of in-
terest. The solution of this problem is defined on the set of
possible densitiesP that are consistent with partial infor-
mation expressed in the form of constraints (3). If one does
not have any information on probability characteristics de-
fined on the possibility spaceX or on the class of densities
P, then the setP is the largest and the solution is vacuous,
i.e. M(g) = inf g(X) and M(g) = sup g(X). Given
evidence reducing the setP, the interval[M(g), M(g)]
becomes more narrow and different from the vacuous one.

Assume there is a comparative judgement ”the prevision
of a gambleγk(xk) does not exceed the prevision of a
gambleβk(yk)”. Herexk andyk are the subvectors ofX.
This judgement can be written as

∫

Rn
+

γk(xk)ρ(X)dX ≥
∫

Rn
+

βk(yk)ρ(X)dX

and act as an additional constraint to problem (1)-(3).

It should be noted that only joint densities are used in the
optimization problem (1)-(3) because in a general case we
may not be aware whether the variablesx1, ..., xn are de-
pendent or not. If it is known that the components are in-
dependent, thenρ(X) = ρ(x1) · · · ρ(xn). Here we use the
definition of independence in the sense of classical proba-
bility theory. In this case the setP is reduced and consists
only of the densities that can be represented as a product.
The optimization problem for computing a new lower pre-
vision is of the form:

M(g) = inf
P

∫

Rn
+

g(X)ρ1(x1) · · · ρn(xn)dX, (4)

subject to

ρi(xi) ≥ 0,
∫ ∞

0
ρi(xi)dxi = 1,

aij ≤
∫ ∞

0
ϕij(xi)ρi(xi)dxi ≤ aij , i ≤ n, j ≤ mi.

(5)

In this case the problem becomes non-linear, which makes
it more difficult to solve. However, some reliability prob-
lems can be easily solved by using the primal form.

Example 1 Consider a series system consisting ofn in-
dependent components. A system is called series if its life-
timexs is given byg(x1, ..., xn) = mini=1,...,n xi, where
xi is thei-th component lifetime [1]. Letai = M(xi) and
ai = M(xi) be the lower and upper mean times to fail-
ure of thei-th component,i = 1, ..., n. Moreover, suppose
that 0 ≤ xi ≤ T , i = 1, ..., n. Let us find the lower mean
time to failure of the systemM(mini=1,...,n xi). The opti-
mization problem for computing new lower prevision is of



the form:

M(g) = inf
P

∫

Ω
min(x1, ..., xn)ρ1(x1) · · · ρn(xn)dX,

subject to

ρi(xi) ≥ 0,
∫ T

0
ρi(xi)dxi = 1,

ai ≤
∫ T

0
xiρi(xi)dxi ≤ ai, i ≤ n.

HereΩ = [0, T ]× ...× [0, T ].

According to [1], we can rewrite the objective function and
constraints as follows:

M(g) =
∫ T

0
F 1(x) · · · Fn(x)dx,

whereF i(x) is the lower survivor function of thei-th com-

ponent lifetime such that
∫ T
0 F i(x)dx = ai.

By using Chebyshev’s inequality, we have

∫ T

0

n
∏

i=1

F i(x)dx ≥ 1
Tn−1

n
∏

i=1

∫ T

0
F i(x)dx.

Hence minimally coherent solution is

M(g) =
1

Tn−1

n
∏

i=1

ai.

3 Kuznetsov’s and Walley’s forms

Problem (1)-(3) has infinitely many variables and it can
hardly be solved directly. However, we can apply some
known tricks that help solve these problems. One of the
pivotal tools in linear programming is the concept of du-
ality. According to the duality theorem (see, for example,
[6]) the minimum in the above-stated problem coincides
with the maximum attained in the dual problem which in
many cases is much easier to solve.

The transition from the primal problem to the dual one re-
ceives coverage in the literature only for the discrete case.
In employing the discrete results we will demonstrate the
transition to the dual problem for the continuous case.

Let us rewrite problem (1)-(3) in the form of finite differ-
ence

M∗(g) = inf
P

n
∑

K=1

g(X(K))ρ(X(K))4XK ,

subject to

ρ(X(K)) ≥ 0,
n

∑

K=1

ρ(X(K))4XK = 1,

aij ≤
n

∑

K=1

ϕij(x
(ki)
i )ρ(X(K))4XK ≤ aij ,

i ≤ n, j ≤ mi.

Here K = (k1, ..., kn), X(K) = (x(k1)
1 , ..., x(kn)

n ),
4XK = 4x(k1)

1 · · · 4x(kn)
n . This is the linear program-

ming problem with finite number of variablesρ(X(K)).
Therefore, we can write the dual optimization problem for
computing the lower prevision as follows:

M∗(g) = sup
c,cij ,dij



c +
n

∑

i=1

mi
∑

j=1

(

cijaij − dijaij
)



 ,

subject tocij ∈ R+, dij ∈ R+, c ∈ R and∀X(K) ≥ 0

c +
n

∑

i=1

mi
∑

j=1

(cij − dij)ϕij(x
(ki)
i ) ≤ g(X(K)).

As it is seen, the density functions are not variables any-
more. By using the passage to limit asmaxK 4XK → 0,
we obtain the following problem:

M(g) = sup
c,cij ,dij



c +
n

∑

i=1

mi
∑

j=1

(

cijaij − dijaij
)



 , (6)

subject tocij ∈ R+, dij ∈ R+, c ∈ R and∀X ≥ 0

c +
n

∑

i=1

mi
∑

j=1

(cij − dij)ϕij(xi) ≤ g(X). (7)

Problem (6)-(7) can be rewritten in another form:

M(g) = sup
c,cij



c +
n

∑

i=1

mi
∑

j=1

cijaij



 , (8)

subject tocij ∈ R, c ∈ R and∀X ≥ 0

c +
n

∑

i=1

mi
∑

j=1

cijϕij(xi) ≤ g(X), (9)

where

aij =
{

aij , cij ≥ 0
aij , cij < 0

.

Thus, we have arrived at the natural extension in
Kuznetsov’s form [5] which is valid for both continuous
and discrete case.

The natural extension in the dual (Kuznetsov’s) form of a
linear optimization problem is a constructive tool and al-
lows us to solve various applied problems. As a matter of
fact, most of analytical results obtained in reliability analy-
sis by the authors of the current paper have been inferred



owing to the dual form of the natural extension. However,
this representation has some limitations. For instance, in-
dependence relationships cannot be introduced to the dual
form since it is valid only for linear programming prob-
lems. On the contrary, independence relationships can be
easily introduced through the primal form at the cost of
having a non-linear optimization problem.

Suppose only the lower previsionsM(ϕij(xi)) = aij , i =
1, ...n, j = 1, ..., mi, are known. Let us introduce new
gambles

ψij(xi) = ϕij(xi)−M(ϕij(xi)) = ϕij(xi)− aij .

They are called almost desirable gambles [9] or centered
gambles [5]. ThenM(ψij) = 0 and we can rewrite prob-
lem (6)-(7) as follows:

M(g) = sup
c,cij



c +
n

∑

i=1

mi
∑

j=1

cijM(ψij)



 = sup c, (10)

subject tocij ∈ R+, c ∈ R and

c +
n

∑

i=1

mi
∑

j=1

cijψij(xi) ≤ g(X), ∀X ≥ 0.

Let us represent constraints as

g(X)− c ≥
n

∑

i=1

mi
∑

j=1

cijψij(xi), ∀X ≥ 0. (11)

Optimization problem (10)-(11) can be written in the dif-
ferent form

M(g) = sup







c : g(X)− c ≥
n

∑

i=1

mi
∑

j=1

cijψij(xi)







.

(12)
If only the upper previsionsM(ϕij(xi)) = aij are known,
then∀X ≥ 0,

M(g) = inf







c : g(X)− c ≤
n

∑

i=1

mi
∑

j=1

cijφij(xi)







,

(13)
where

φij(xi) = M(ϕij(xi))− ϕij(xi) = aij − ϕij(xi).

Representations (12) and (13) are nothing else than the
natural extension in Walley’s form.

Example 2 Consider a series system consisting ofn
components. Letai = M(I[t,∞)(xi)) and ai =
M(I[t,∞)(xi)) be the lower and upper reliabilities at time
t of thei-th component,i = 1, ..., n. (As the reliability of a
component/system within a predefined time interval[0, t]

is the probability that time to failure belongs to[t,∞),
then it could be written asM(I[t,∞)(x)), wherex is time
to failure). There is no information about the indepen-
dence of the components. Let us find the lower reliability
of the systemM(I[t,∞)(mini=1,...,n xi)). It follows from
(8)-(9) that

M(I[t,∞)( min
i=1,...,n

xi)) = sup
c,ci

(

c +
n

∑

i=1

ciai

)

,

subject toci ∈ R, c ∈ R and∀X ≥ 0

c +
n

∑

i=1

ciI[t,∞)(xi) ≤ I[t,∞)( min
i=1,...,n

xi),

It can be seen from the constraints that the set of
all values of xi can be divided into to subsets[0, t)
and [t,∞). If xi ∈ [0, t), then I[t,∞)(xi) = 0
and I[t,∞)(mini=1,...,n xi) = 0. Note that
I[t,∞)(mini=1,...,n xi) = 1 if xi ∈ [t,∞) for all
i = 1, ..., n. So, the constraints can be rewritten as
follows:

c +
∑

i∈J

ci ≤ 0, J ⊂ {1, ..., n}, c +
n

∑

i=1

ci ≤ 1, c ≤ 0.

Let us show that the optimal solution is achieved byck ≥
0, k = 1, ..., n. If (c, c1, . . . , cn) is a feasible solution
andck < 0, then(c, c1, ..., 0k, ..., cn) is a feasible solution
corresponding to a greater value of the objective function.
Indeed

c +
n

∑

i=1,i 6=k

ci ≤ 0.

This implies thatck ≥ 0 and most of the constraints result
from the following ones:

c +
n

∑

j=1,j 6=i

ci ≤ 0, i ≤ n, c +
n

∑

i=1

ci ≤ 1, c ≤ 0.

Now we can write0 ≤ ci ≤ 1, i = 1, ..., n. This implies
that c ≤ −(n − 1) if ci = 1 and c ≤ 0 if ci = 0, i =
1, ..., n. Then

M(I[t,∞)( min
i=1,...,n

xi)) = max

(

n
∑

i=1

ai − (n− 1), 0

)

.

4 Degenerate form

In reliability calculations one primarily has to deal with
continuous gambles, for example, time to failureϕ(t) = t,
i.e. the constraints in the natural extension must be satis-
fied for all valuest of these gambles. This implies that
the optimization problem has to be solved for the infinite
number of constraints or variables. In some special cases



it is possible to overcome this difficulty. However, gener-
ally this fact makes the optimization problems difficult to
solve directly. Therefore, some findings and developments
are necessary. One of the ways is to use the Dirac func-
tions which have unit area concentrated in the immediate
vicinity of some point. In this case the infinite dimensional
optimization problem is reduced to a problem with a fi-
nite number of variables equal to the number of constraints
(pieces of evidence) plus one. In the case of employing the
Dirac functions, the optimization problem, unfortunately,
becomes non-linear. It should be noted however, the nat-
ural extension for a system with independent components
is a non-linear programming problem anyway. Thus, this
approach is especially efficient under the condition of in-
dependent components and continuous gambles.

It should be noted that the Dirac functions have been con-
sidered in [2] as an optimal solution to the optimization
problem of preventive maintenance under incomplete in-
formation. However, there were studied only some special
cases of partial initial information. Here we consider a
general case fitting the framework of the theory of coher-
ent imprecise probabilities.

Theorem 1 If an optimal solution of optimization prob-
lem (1)-(3) exists, then it can be found in the class of de-
generate densities

ρ∗(X) =
N+1
∑

k=1

ckδXk(X), N =
n

∑

i=1

mi (14)

whereXk = (x(k)
1 , ..., x(k)

n ) ∈ Rn
+, ck ∈ R+. (For the

proof see Appendix.)

By substituting the degenerate class of densities (14) into
objective function (1) and constraints (3) we obtain

M(g) = inf
ck,Xk

N+1
∑

k=1

ckg(Xk), (15)

subject to

N+1
∑

k=1

ck = 1, ck ≥ 0, k = 1, ..., N + 1, (16)

aij ≤
N+1
∑

k=1

ckϕij(x
(k)
i ) ≤ aij , i ≤ n, j ≤ mi.

We refer to the natural extension (15)-(16) as the degen-
erate form. Problem (15)-(16) is valid for a case when we
are ignorant of whether the components in a system are de-
pendent or not. For independent components the following
theorem can be formulated:

Theorem 2 If an optimal solution of optimization prob-
lem (4)-(5) exists, then it can be found in the class of de-
generate densities

ρ∗k(x) =
mk+1
∑

j=1

c(k)
j δx(j)

k
(x), k = 1, ..., n, (17)

wherex(j)
k ∈ R+, c(k)

j ∈ R+. (For the proof see Appen-
dix.)

By substituting the degenerate class of densities (17) into
objective function (4) and constraints (5) we obtain

M(g) = inf
cj ,Xj

m1+1
∑

l1=1

...
mn+1
∑

ln=1

g(x(l1)
1 , ..., x(ln)

n )
n

∏

v=1

c(v)
lv ,

subject to

ml+1
∑

k=1

c(l)
k = 1, c(l)

k ≥ 0, l = 1, ..., n,

aij ≤
mi+1
∑

l=1

ϕij(x
(l)
i )c(i)

l ≤ aij , i ≤ n, j ≤ mi.

The three forms, primal, dual and Walley’s, have been re-
peatedly employed by the authors for generalizing differ-
ent reliability measures, models and approaches to coher-
ent interval-valued probabilities [3, 4, 7, 8]. The degener-
ate form of the natural extension has not been used until
now in any reliability modelling. An example below is a
finding that contributes to the generalization of reliability
models and demonstrates how the degenerate form can be
used and analytical expressions can be inferred.

Example 3 on how the degenerate form of the natural ex-
tension can be used in computing the stress-strength reli-
ability under incomplete information. LetY be a random
variable describing the strength of a system and letX be
a random variable describing the stress or load placed on
the system. Then the stress-strength reliability of the sys-
tem is determined asR = Pr {X ≤ Y }. Assume that the
probability distribution functions of the independent stress
and strength are given as non-parametric functions and
quantified by precise probabilities. That is

Pr{X ≤ αi} = pi, Pr{Y ≤ βj} = qj ,

i = 1, ..., m1, j = 1, ...,m2,

where

α1 ≤ α2 ≤ ... ≤ αm1 , β1 ≤ β2 ≤ ... ≤ βm2
,

p0 = 0 ≤ p1 ≤ p2 ≤ ... ≤ pm1 ≤ pm1+1 = 1,

q0 = 0 ≤ q1 ≤ q2 ≤ ... ≤ qm2 ≤ qm2+1 = 1.



We are interested in finding the lower boundR of R. There
are two random variablesX and Y (n = 2) and m1+
m2 previsions: pi and qj , i = 1, ..., m1, j = 1, ...,m2.
By using the degenerate form of the natural extension the
following problem can be stated

R = inf
m1+1
∑

k=1

m2+1
∑

j=1

I[0,∞)(yj − xk)ckdj , (18)

subject to
m1+1
∑

k=1

ck = 1,
m2+1
∑

j=1

dj = 1, (19)

m1+1
∑

i=1

I[0,αk](xi)ci = pk, k = 1, ...,m1, (20)

m2+1
∑

i=1

I[0,βj ](yi)di = qj , j = 1, ..., m2.

Here the infimum is taken over the set of variablesxi, yj ,
ci, dj ∈ R+, i = 1, ..., m1, j = 1, ...,m2, satisfying
constraints (19)-(20). Assume that

x1 ≤ x2 ≤ ... ≤ xm1+1, y1 ≤ y2 ≤ ... ≤ ym2+1.

Let us prove that for all possiblek, the following condi-
tionsxk ∈ [αk−1, αk], yk ∈ [βk−1, βk] for optimal values
ofxk andyk are valid. Hereα0 = 0, β0 = 0, αm1+1 = A,
βm2+1 = B. In particular, A → ∞, B → ∞. Suppose
that there are two optimal values ofxj and xk such that
xj ∈ [αk−1, αk] andxk ∈ [αk−1, αk]. If j < k, then it
follows from (20) that

c1 + ... + cj−1 = pj−1, c1 + ... + cj−1 = pj .

We have arrived at the contradiction. Ifj > k, then it
follows from (20) that

c1 + ... + cj = pk, c1 + ... + cj = pj .

We have also arrived at the contradiction. Similarly, we
obtain the contradiction for an arbitrary combination of
optimal values belonging to the same interval. This im-
plies thatxk ∈ [αk−1, αk]. The proof of the condition
yk ∈ [βk−1, βk] can be conducted in the same way. It
follows from these conditions and from (20) that

c1 = p1, c1 + c2 = p2, ...,
m1
∑

i=1

ci = pm1 ,

d1 = q1, d1 + d2 = q2, ...,
m2
∑

i=1

di = qm2 .

Hence

ck = pk − pk−1, dj = qj − qj−1, k ≤ m1, j ≤ m2.

Note that the objective function (18) achieves its minimum
if for all k ≤ m1+1 andj ≤ m2+1 there holdI[0,∞)(yj−
xk) = 0. However, there exist valuesj and k such that
I[0,∞)(yj−xk) = 1 for arbitrary values ofyj , xk. Letj(k)
be a minimal index such that there holdxk ∈ [αk−1, αk],
yj(k) ∈ [βj(k)−1, βj(k)], αk ≤ βj(k). ThenI[0,∞)(yj −
xk) = 1 for all j ≥ j(k) + 1. This implies that

R =
m1+1
∑

k=1

m2+1
∑

j=j(k)+1

ckdj

=
m1+1
∑

k=1

m2+1
∑

j=j(k)+1

(pk − pk−1)(qj − qj−1).

It follows from
∑m2+1

j=j(k)+1(qj − qj−1) = 1− qj(k) that

R =
m1
∑

k=1

(pk − pk−1)(1− qj(k)).

5 Concluding remarks

The degenerate form of the natural extension, apart from
its applied value, sheds quite some light to the understand-
ing of what imprecise previsions really are. They are an
ultimate case of coherent interval-valued previsions which
can be seen as a rough modelling with ignoring evidence
in some cases. When applying the natural extension, we
declare that the lower and upper previsions are sought over
the set of all possible probability distributions, i.e. the
widest class, which is really appealing. As it is clear, the
widest class includes the class of the degenerate distribu-
tions that are a very particular and practically unrealistic
class of distributions. Degenerate distributions are mathe-
matical abstractions that can hardly anyhow satisfactorily
model any distribution used at least in reliability theory.
Yet, it turns out that coherent previsions exist just on this
class of distributions that we would really like to abstain
from involving. What evidence is ignored?

For example, in reliability applications this is a fact that
the probability distribution of time to failure can hardly be
concentrated in a few specific points of the real line. Is not
it a reason that the practitioners face the fact that interval
statistical models are too much imprecise to be employed
in most practical studies and widely used? The evidence
that the probability distribution functions of time to fail-
ure must be smooth values differentiable at any point of
the real line is ignored. In many cases another evidence
is obvious: the probability distribution functions of time
to failure must exceed zero at any point over an interval
[0, T ] except for the ending points. Can these evidence be
utilized through Walley’s and Kuznetsov’s form of the nat-
ural extension and the concept of a gamble? One would
experience difficulty in doing this. Yet, this kind of evi-
dence and many others can be utilized through the primal



form, which makes us think that the natural extension in
its primal form is a more general tool for extending knowl-
edge. It gives us a possibility to involve a wider class of
evidence and judgements, which may be crucial for appli-
cations and may lead to obtaining more precise previsions
and reducing indeterminacy.
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Appendix

The proofs of Theorem 1 and 2 are based on two lemmas.

Lemma 1 Suppose that functionsg(i)(t), i = 1, ..., m
and g(t) are integrable on[0,∞). Then an optimal so-
lution of the problem

z = max
Φ

∫ ∞

0
g(t)H(t)dt,

subject to
∫ ∞

0
g(i)(t)H(t)dt = ai, i = 1, ..., m,

can be found in a class of degenerate distributions focus-
ing onm + 1 points. HereH(t) is a non-increasing func-
tion such thatH(t) ≥ 0, H(0) = 1; Φ is a set of all
possible functionsH(t) satisfying the constraints.

Proof. Let us consider a discrete optimization problem:

z = max
n

∑

k=0

gkxk,

subject to

n
∑

k=0

g(i)
k xk = ai, i = 1, ...,m,

1 = x0 ≥ x1 ≥ x2 ≥ ... ≥ xn ≥ 0.

Let us introduce new variablesαk = xk − xk+1, k =
0, 1, 2, ..., n−1, αn = xn. Hencexk = αk +αk+1 + ...+
αn. Now the following equivalent problem can be written:

z = max
n

∑

j=0

j
∑

k=0

gkαj ,

subject to

n
∑

j=0

j
∑

k=0

g(i)
k αj = ai, i = 1, .., m, αk ≥ 0, k = 0, .., n.

This is a linear optimization problem in the canonical
form. The constraints are the system of linear equations
of dimensionm × (n + 1). It is known that an optimal
solution of such problem can be found among the basic
solutions for which onlym components are positive and
other are equal to zero. Suppose that the non-zero compo-
nents areαk1 , αk2 , ..., αkm . Then the following equalities
hold:

x0 = x1 = ... = xk1 ,

xk1+1 = xk1+2 = ... = xk2 ,

· · ·
xkm+1 = xkm+2 = ... = xn.

This implies that there arem jumps in the sequence{xk}.
If the last term of the sequence isxn > 0, then there is the
(m + 1)-th jump. Note thatm is independent ofn. Then
the passage to the limit asn →∞ completes the proof.

Lemma 2 Suppose that functionsg(i)(t), i = 1, ..., m
and g(t) are integrable on[0,∞). Then an optimal so-
lution of the problem

z = max
Φ

∫ ∞

0
g(t)H(t)dt,



subject to

ai ≤
∫ ∞

0
g(i)(t)H(t)dt ≤ ai, i = 1, ..., m,

can be found in a class of degenerate distributions focus-
ing onm + 1 points. HereH(t) is a non-increasing func-
tion such thatH(t) ≥ 0, H(0) = 1; Φ is a set of all
possible functionsH(t) satisfying constraints.

Proof. We write a discrete optimization problem

z = max
n

∑

j=0

j
∑

k=0

gkαk,

subject to

ai ≤
n

∑

j=0

j
∑

k=0

g(i)
k αk ≤ ai, i = 1, ...,m,

αk ≥ 0, k = 0, 1, ..., n,

as it has been done in the proof for Lemma 1. Let us
rewritem constraints in the matrix formA ≤ G ·X ≤ A,
whereG is a matrix with componentsg(i)

k ; X, A andA
are vectors with componentsαk, ai andai, respectively.
Let us fix such a vectorY that A ≤ Y ≤ A. Then an
optimization problem with constraintsG · X = Y satis-
fies Lemma 1, i.e. the optimal solution hasm non-zero
components. Let the initial optimization problem has an
optimal solutionX∗. Then there existsY ∗ = GX∗ such
that A ≤ Y ∗ ≤ A. However, Lemma 1 implies that the
fixed vectorY ∗ hasm non-zero components. This com-
pletes the proof.

Proof of Theorem 1. If we replace the variablet by the
vectorX, then the condition of Lemma 2 is not changed
and the optimal solution to the problem

z = max
Φ

∫

Rn
+

g(X)H(X)dX,

subject to

ai ≤
∫

Rn
+

g(i)(X)H(X)dX ≤ ai, i ≤ N,

is a n-dimensional distribution functionH∗(X) having

N + 1 jumps at pointsXk = (x(k)
1 , ..., x(k)

n ), k ≤ N .
Then

ρ∗(X) =
∂nH∗(X)

∂x1 · · · ∂xn
=

N+1
∑

k=1

ckδXk(X),

whereck is a length of thek-th jump.

Proof of Theorem 2.Let an optimal solution to the initial
problem beρ∗1(x1) · · · ρ∗n(xn). Let us fix allρ∗i , i 6= k,
exceptρk, k ∈ {1, ..., n}. We obtain an optimal solution
of the problem because the number of constraints for the
problem of one unknown densityρk is mk.


