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Abstract

Methods for computing the reliability of complex systems
described in the current paper are grounded on partial in-
formation on system components. A tool for inferring the
intervals is the natural extension and the upper and lower
bounds of the characteristics to be interpreted as coherent
upper and lower previsions. A generic algorithm to find a
solution of the natural extension in a practically affordable
way braking down the general problem into problems that
are much easier to solve is described. In general this can
be made at the cost of a lesser precision in the previsions
of interest. It is also shown that for some particular cases
the genuine, minimally coherent, solutions can be found
through the algorithm developed. The second part of the
paper is devoted to those cases when the reliability of com-
ponents constituting a system is represented by identical
interval-valued reliability characteristics. That is, all the
components are characterized, for example, by probabili-
ties to failure in the same time interval, or by mean times
to failure or some others. Often namely these particular
cases take place in reliability analysis practice. In this re-
spect, based on the previous works by the authors of the
current paper some new findings have been disclosed and
new results obtained on particular practical cases.

Keywords. Imprecise probability theory, imprecise relia-
bility, natural extension, previsions.

1 Introduction

Methods for computing the reliability of complex systems
described in the current paper are based on partial informa-
tion for system components. Since the given information
is partial, we do not expect precise numbers, but we would
like to know an interval of possible values of a desired re-
liability characteristic. A tool for inferring the intervals
is the natural extension and the upper and lower bounds
of the characteristics to be interpreted as coherent upper
and lower previsions in the sense of P. Walley [11] and V.
Kuznetsov [6].

The reliability analysis of complex systems becomes a dif-
ficult problem in case the reliability information on the
components is partial and the number of components in
a system is large. Even if information about the indepen-
dence of components is absent (this case is easier to han-
dle in the framework of coherent imprecise previsions), the
natural extension as a linear programming problem has a
large dimensionality. Nevertheless in many practical cases
source reliability data on the components is homogeneous
(each component is quantified by the same reliability char-
acteristic) and there is no need to seek for a solution of the
natural extension in its general form. It is possible to sim-
plify the problem and to find the solution easier, in some
cases only approximate.

The general case of system reliability calculations based
on coherent upper and lower previsions was developed by
L. Utkin and described in [8, 10, 3]. A particular case,
when component reliabilities are characterized by coher-
ent imprecise probabilities was developed by I. Kozine and
described in [4] and [5].

The current paper describes a generic algorithm to find a
solution of the natural extension in a practically affordable
way by breaking down the general problem into problems
that are much easier to solve. In general, this can be made
at the cost of a lesser precision in the previsions of inter-
est. It is also shown that for some particular cases the gen-
uine, minimally coherent, solutions can be found through
the algorithm developed. The second part of the paper is
devoted to those cases when the reliability of components
constituting a system is represented by identical interval-
valued reliability characteristics. That is, all the compo-
nents are characterized, for example, by probabilities to
failure in the same time interval, or by mean times to fail-
ure or some others. Often namely these particular cases
take place in reliability analysis practice. In this respect,
based on the previous works by the authors of the current
paper some new findings have been disclosed and new re-
sults obtained for particular practical cases.



2 Formulation of the problem

Consider a system consisting ofn components. Let
ϕij(xi) be a function of thei-th component lifetimexi,
j = 1, ..., mi. Heremi is the number of quantitative or
qualitative judgements that are related to thei-th compo-
nent. According to Barlow and Proschan [1], the system
lifetime is uniquely determined by the component life-
times. DenoteX = (x1, ..., xn), then there exists a func-
tion g(X) of the component lifetimes that characterizes
a system reliability characteristic. The functionsϕij(xi)
andg(X) can be regarded as gambles, where a gamble is
a real-valued function on a possibility space whose value
is uncertain [11, 6].

Suppose that partial reliability information on the compo-
nents is represented as a set of lower and upper previsions

aij = M
′
(ϕij(xi)), aij = M

′

(ϕij(xi)), i = 1, ..., n,
j = 1, ..., mi. The designation of the previsions with
the prime notation indicates that the previsions should be
considered initial and not necessarily coherent. If, for in-
stance, the gambleϕij(xi) = x, then aij is the lower
bound of the mean time to failure of thei-th component;
or if ϕij(xi) = I[t,∞)(x), thenaij is the lower probability
of the failure occurrence within[t,∞) etc.

In order to compute the coherent lower and upper previ-
sionsM(g) andM(g) of interest characterizing the sys-
tem reliability the natural extension can be used in the fol-
lowing form [3]:

M(g) = sup
P

∫

Rn
+

g(X)ρ(X)dX, (1)

M(g) = inf
P

∫

Rn
+

g(X)ρ(X)dX,

subject to

ρ(X) ≥ 0,
∫

Rn
+

ρ(X)dX = 1

M
′
(ϕij(X)) ≤

∫

Rn
+

ϕij(X)ρ(X)dX
∫

Rn
+

ϕij(X)ρ(X)dX ≤ M
′

(ϕij(X))

j = 1, ..., mi, i = 1, ..., n.























(2)

Here the minimum and maximum are taken over the set
P of all possiblen-dimensional density functions{ρ(X)}
satisfying conditions (2). A solution of problem (1) exists
if all the constraints (2) form a joint setP . Otherwise,
if the initial interval-valued data forming the constraints
are not consistent, some of the subsets ofP are disjoint
and the solution does not exist. The introduction of the
assumption of the existence of a convex setP is necessary
to obtain a solution of the problem (1) subject to (2). This
assumption is equivalent to the principle of avoiding sure
loss [11].

It should be noted that we cannot expect the set of initial
source interval-valued data to be consistent in a stronger

way than the avoiding sure loss. We cannot require from
the experts or analysts to generate coherent intervals, but
interval-valued assessments that avoid sure loss. In order
to have the initial set of data coherent, we have to use
the natural extension in a form similar to (1)-(2) where
the objective functions areaij = M(ϕij(xi)) andaij =
M(ϕij(xi)) for some specificj = k, and the constraints
do not contain these previsions. Solving these optimiza-
tion problems would make all the previsions coherent. The
natural extension provides us not only with a tool to obtain
new previsions coherent to the set of initial judgements,
but with a tool to make the initial judgements coherent.

To find the exact solution of the general (primal) opti-
mization problem (1) subject to (2), ifn is relatively large
andmi > 1, is a hardly affordable task (for our knowl-
edge a general analytical solution of problem (1)-(2) can-
not be found), yet numerical iterative algorithms can be
developed to obtain approximate lower and upper previ-
sions of interest. For some particular cases, for example,
when each component in a system is characterised by the
same set of reliability characteristics, exact solutions can
be found and all those cases revealed by the authors are
addressed in section 4.

3 Algorithm for computing approximate
previsions

Let the number of possible gambles, i.e. functionsgk, be
equal toN , whereN ≥ mi for any i = 1, ..., n. Then
we offer the following algorithm to approximately com-
pute any imprecise previsions of interest for an arbitrary
system.

1. Takek = 1.

2. For each component, the coherent previsions
M(gk(xi)) and M(gk(xi)) of the gamble gk

are computed from previsionsM
′

(ϕij(xi)) and

M
′
(ϕij(xi)), j = 1, ...,mi. As a result we obtain

the lower and upper previsions of the gamblegk for
each component

M(gk(xi)) = inf
Pi

∫

R+

gk(xi)ρ(xi)dxi,

M(gk(xi)) = sup
Pi

∫

R+

gk(xi)ρ(xi)dxi,

subject to

M
′
(ϕij(xi)) ≤

∫

R+

ϕij(xi)ρ(xi)dxi,

∫

R+

ϕij(xi)ρ(xi)dxi ≤ M
′

(ϕij(xi)),



ρ(xi) ≥ 0,
∫

R+

ρ(xi)dxi = 1, j = 1, ...,mi.

3. Compute the coherent lowerM(gk(z)) and upper
M(gk(z)) previsions of the system for the same gam-
blegk assuming that all components are characterized
by the calculated previsions of the gamblegk (previ-
ous Step 2). Herez is the lifetime of the system

M(gk(z)) = inf
R(k)

∫

Rn
+

gk(X)ρ(X)dX,

M(gk(z)) = sup
R(k)

∫

Rn
+

gk(X)ρ(X)dX,

subject to

M(gk(xi)) ≤
∫

Rn
+

gk(xi)ρ(xi)dxi ≤ M(gk(xi)),

ρ(X) ≥ 0,
∫

Rn
+

ρ(X)dX = 1, i = 1, ..., n.

4. Takek = k + 1. If k ≤ N , then go to Step 2, other-
wise - to Step 5.

5. As a result of the previous steps, we obtain a set
of lower and upper previsionsM(gk(z)), M(gk(z)),
k = 1, ..., N , for the system. Now the set of these
previsions acts as the constraints in the optimization
problem (1), and the system previsions of interest
M∗(g(z)) andM

∗
(g(z)) are computed. The aster-

isk in the notation is used to distinguish between the
genuine solution of the problem and its approxima-
tion

M∗(g(z)) = inf
R

∫

R+

g(z)ρ(z)dz,

M
∗
(g(z)) = sup

R

∫

R+

g(z)ρ(z)dz,

subject to

M(gk(z)) ≤
∫

R+

gk(z)ρ(z)dz ≤ M(gk(z)),

ρ(z) ≥ 0,
∫

R+

ρ(z)dz = 1, k = 1, ..., N.

The proposed algorithm is easy to fulfil through the use
of the duality theorem and a proper program has been
created by the authors to make the algorithm run. It is
proven below that the previsions computed through the al-
gorithm are coherent, and the proof is based on the fact that
any wider interval[M∗(g), M

∗
(g)] in comparison with the

genuine coherent interval[M(g),M(g)] avoids sure loss.

One more positive feature of the algorithm is worth men-
tioning. Step 3 implies the calculation of system reliability

characteristics. In many cases there will not be a need to
solve this optimization problem since a number of analyt-
ical solutions have been obtained by the authors for calcu-
lating interval-valued previsions of interest at system level.
All the formulas revealed and allowing to avoid solving the
general problem under Step 3 can be found in section 4 of
the current paper.

Let us show that the proposed algorithm produces an in-
terval of previsions which is wider then the minimally co-
herent interval or equal to it. In fact, the theorem below
proves that any solution obtained with the offered algo-
rithm is a coherent approximation which in some special
cases can coincide with the exact solution.

Theorem 1 If the lower and upper previsionsM∗(g) and
M
∗
(g) are computed according to the above algorithm,

then
[M(g),M(g)] ⊆ [M∗(g), M

∗
(g)],

whereM(g) and M(g) are the genuine solutions of the
problem (1) subject to (2).

Proof. Let Pij be a set of all densities satisfying thej-
th constraint for thei-th component andPi =

⋂mi
j=1 Pij

be a set of all densities satisfying all constraints for thei-
th component,i = 1, ..., n. Then a set of all densitiesP
satisfying all constraints for all components is determined
as

P = P1 ∩ ... ∩ Pn =
n
⋂

i=1

Pi =
n
⋂

i=1

mi
⋂

j=1

Pij .

Suppose that coherent previsionsM(gk(xi)) and
M(gk(xi)) for a particulark and for thei-th component
produce constraints corresponding to a set of densities
R(k)

i . (M(gk(xi)) and M(gk(xi)) are the outcome
of Step 2 of the algorithm) It can be concluded that
Pi ⊆ R(k)

i . Indeed, sinceM(gk(xi)) and M(gk(xi))
were defined on the setPi, the inverse problem (defining
a setP ′i based onM(gk(xi)) and M(gk(xi))) cannot

produce the setP ′i smaller thanPi, hencePi ⊆ R(k)
i .

ThenR(k)
i = Pi ∪ ∆R(k)

i , where∆R(k)
i is the comple-

ment ofPi toR(k)
i . By using the approximate algorithm,

we obtain at thek-th stage a set of densitiesR(k) for the
system determined as

R(k) =
n
⋂

i=1

R(k)
i =

n
⋂

i=1

(Pi ∪∆R(k)
i )

=

(

n
⋂

i=1

Pi

)

∪∆R(k) = P ∪∆R(k),

where∆R(k) is an additional set of densities which gives
extension of the interval of previsions obtained by means
of approximate algorithm. Then the final set of densities



for computing the lower and upper system previsions is

R =
N
⋂

k=1

R(k) =
N
⋂

k=1

(P ∪∆R(k))

= P ∪
N
⋂

k=1

∆R(k) = P ∪∆R,

where the set∆R determines the error of the approximate
algorithm.

It follows from the last expression thatP ⊆ R and
[M(g),M(g)] ⊆ [M∗(g), M

∗
(g)].

If the system components are independent, then the proof
of the theorem is similar under the condition that all the
sets considered in the above proof consist of densities rep-
resented as the product of marginal densities.

It is possible that for somek ∆R(k) = ∅ or for somek 6= l
∆R(k)∩∆R(l) = ∅, then∆R = ∅meaning that the solu-
tion produced by the algorithm is coherent, i.e. coinciding
with the solution of the general problem (1) - (2). The
larger number of different gamblesgk(x) is involved, the
greater chance that∆R is empty and the solution is co-
herent. As a matter of fact, this is quite likely to obtain
minimally coherent previsions with the algorithm offered
in some practical cases. The theorem below demonstrates
one case where the exact solution of the natural extension
can be obtained. Informally, the theorem states if a system
reliability characteristic which is going to be calculated is
the same as one of the characteristics quantifying a com-
ponent reliability in the system, then one obtains exact (not
approximate) solution of the natural extension. For exam-
ple, if one is interested to know the mean time to failure
of a system and at least for one component the mean time
to failure (precise or imprecise) is known, then the solu-
tion found through the algorithm is the genuine solution
of problem (1) - (2). Formally, this is posed as follows:

Theorem 2 Suppose thatn components are characterized
by the lower and upper previsions of a set of gambles

Φ = {ϕij(x), j = 1, ..., mi, i = 1, ..., n}.

Heremi is the number of judgements about theith com-
ponent. LetΨ be a subset of the setΦ such that all gam-
bles belonging toΨ are different. DenoteL the cardinality
of Ψ, i.e. the number of its components. Then by taking
N = L andgk(x) = ϕij(x) ∈ Ψ at thek-th stage of the
algorithm, the solution of problem (1) - (2) coincides with
the solution obtained by the algorithm.

Proof. In order to prove the theorem it is enough to
prove that ∆R = ∅. Let us consider thejth ini-
tial lower and upper prevision of theith component

[M
′
(ϕij(xi)), M

′

(ϕij(xi))], where gambleϕij(xi) ∈ Ψ.

As it is assumed by the algorithm, these previsions must
avoid sure loss and be not necessarily coherent. In ap-
plying the natural extension to these previsions one ob-
tains the coherent previsionsM(gk(x)) andM(gk(x)) for
which it is always valid that

M(gk(xi)) ≥ M
′
(ϕij(xi)), M(gk(xi)) ≤ M

′

(ϕij(xi)),

andR(k)
i ⊆ Pij . Hence

mi
⋂

j=1

R(j)
i ⊆

mi
⋂

j=1

Pij .

Since all gambles corresponding to thei-th component be-
long to the setΨ, then it follows from the last expression
that

N
⋂

k=1

R(k)
i ⊆

mi
⋂

j=1

R(j)
i ⊆

mi
⋂

j=1

Pij .

This implies that

R =
N
⋂

k=1

R(k) =
N
⋂

k=1

n
⋂

i=1

R(k)
i

=
n
⋂

i=1

N
⋂

k=1

R(k)
i ⊆

n
⋂

i=1

mi
⋂

j=1

Pij = P .

SinceP ⊆ R (see the proof of Theorem 1), thenP = R
and∆R = ∅.

4 Systems with identical gambles

4.1 General statements

This section addresses the reliability of a system consist-
ing of components whose quantification is restricted by the
same reliability characteristics. For example, all compo-
nents constituting the system are characterized by proba-
bilities to failure within the same time interval, or by mean
times to failure etc. The problem of computing the lower
and upper previsions of the system can be stated as fol-
lows.

Let a system consist ofn components,f(xi) be a function
of the i-th component lifetimexi, andf(z) = f(g(X))
be a function of the system lifetimez. Suppose that par-
tial information is represented as a set of the lower and

upper previsionsai = M
′
(f(xi)), ai = M

′

(f(xi)),
i = 1, ..., n. We seek for the lower and upper previsions
M(f(g(X))) andM(f(g(X))) of the system.

Let us introduce some assumptions:

1. All available previsions avoid sure loss, in the sense
that all constraints define a non-empty set of proba-
bility densitiesP =

⋂n
i=1 Pi 6= ∅, and are not neces-

sarily coherent.



2. The gamblesxi are restricted by the interval[0, T ],
that isinf xi = 0 andsup xi = T . Then

X ∈ D =
n

∏

i=1

[0, T ] ⊂ Rn.

In particular, we can assume thatT →∞.

3. The system structure is monotonic. (The structure
function g(x1, ..., xn) = g(X) is monotonic if g
is increasing in each argument [1]) The system has
p minimal pathsP1, ..., Pp containing m1, ...,mp
components, respectively, andk minimal cut sets
K1, ...,Kk. (A minimal cut set is defined as the set of
minimum number of components that, when failed,
guarantees the failure of the system [7]. A minimal
path set is defined as the set of minimum number of
components needed to guarantee the success state of
the system.). Its lifetimeg(X) is given by

g(X) = max
1≤j≤p

min
i∈Pj

xi = min
1≤j≤k

max
i∈Kj

xi.

In practice one can encounter three cases of the state of
knowledge on components independence: (1) the compo-
nents are independent, (2) dependent, and (3) indetermi-
nacy whether the components are independent or not.

The first case dominates in reliability applications. The
second case is difficult to implement as data on the de-
gree of dependence is usually absent and difficult to ob-
tain. The third one cannot be handled in the framework
of the conventional reliability theory. We will confine our-
selves by generalizing to imprecise previsions the first and
third case. It is quite clear, the fewer constraints are im-
posed, the more imprecise previsions of interest are. The
judgement of independence will allow obtaining more pre-
cise previsions. It is regarded as a strong structural judge-
ment. Omitting this judgement assumes the absence of
strong structural constraints which in some cases can be
considered a more credible model of the state of affairs.
(It should be noted that a weak structural assumption on
the components independence does implicitly always ex-
ist and it is referred to as logical independence [2] and [5])

Let us consider first the case of complete ignorance
whether the components are independent or not. This case
is easier to handle with the coherent imprecise previsions.

4.2 Absence of information about components
independence

The natural extension in its primal form (1)-(2) is difficult
to solve. The dual representation of the natural extension
is often more practical for inferring desirable analytical ex-
pressions.

It has been proven [6, 3] that in the absence of information
about independence of components the natural extension

in its dual form can be written as follows:

M(f) = inf
c,ci,di

(

c +
n

∑

i=1

(ciai − diai)

)

,

M(f) = −M(−f),

subject toci ∈ R+, di ∈ R+, c ∈ R, and

f(g(X)) ≤ c +
n

∑

i=1

(ci − di)f(xi), ∀X ∈ D.

Since the functiong(X) is not decreasing, then for the
monotone non-decreasing functionf(xi), there holds

f(g(X)) = g(f(x1), ..., f(xn)). (3)

Indeed, by using the representation of the functiong(X)
through minimal cuts or minimal paths, we can write

g(f(x1), ..., f(xn)) = max
1≤j≤p

min
i∈Pj

f(xi)

= f
(

max
1≤j≤p

min
i∈Pj

xi

)

= f(g(X)).

Denotezi = f(xi). Then the above optimization problem
is

M(g) = inf
c,ci,di

(

c +
n

∑

i=1

(ciai − diai)

)

,

M(g) = −M(−g),

subject to ci ∈ R+, di ∈ R+, c ∈ R, and
∀zi∈[inf f(xi), sup f(xi)],

g(z1, ..., zn) ≤ c +
n

∑

i=1

(ci − di)zi,

Thus we have the problem which was thoroughly studied
in [5, 8, 9, 10]. In particular, for a system withcompo-
nents connected in seriesthe lower and upper previsions
of are

M(g) = max

(

0,
n

∑

i=1

ai − (n− 1) sup f(xi)

)

,

M(g) = min
i=1,...,n

ai.

Forcomponents connected in parallel

M(g) = max
i=1,...,n

ai,

M(g) = min

(

n
∑

i=1

ai, sup f(xi)

)

.

For asystem of an arbitrary structure



M(g) ≥ max
1≤j≤p

max (0, Lj) ,

Lj =
∑

i∈Pj

ai − (mj − 1) sup f(xi)

M(g) ≤ min
1≤j≤k

min





∑

i∈Kj

ai, sup f(xi)



 .

Example 1 Consider a parallel system consisting of3
components. The lower and upper mean times to failure
of the components are known:a1 = 10, a1 = 12, a2 = 8,
a2 = 14, a3 = 12, a3 = 13. Here f(xi) = xi and
g(x1, x2, x3) = max(x1, x2, x3), sup f(xi) → ∞. Then
the system lower and upper mean times to failure are

M(g) = max(a1, a2, a3) = max(10, 8, 12) = 12,

M(g) = a1 + a2 + a3 = 12 + 14 + 13 = 39.

Example 2 Consider a series system consisting of2 com-
ponents. The lower and upper operating probabilities of
the components within the time interval[0, 6] are: a1 =
0.3, a1 = 0.4, a2 = 0.8, a2 = 0.9. Here f(xi) =
I[6,∞](xi) is the indicator function taking the value of1
for xi ≥ 6 and 0 for xi < 6, g(x1, x2) = min(x1, x2),
sup f(xi) = 1. Then the system lower and upper operat-
ing probabilities in the time interval[0, 6] are

M(g) = max (0, a1 + a2 − 1)

= max (0, 0.3 + 0.8− 1) = 0.1,

M(g) = min(a1, a2) = min(0.4, 0.9) = 0.4.

4.3 Independent components

Below we keep the same notation ofzi = f(xi).From (1)-
(2) and the condition of the components independence the
natural extension for the same gamble as the components’
is of the form:

M(g) = inf
P

G, M(g) = sup
P

G,

G =
∫ T

0
· ·

∫ T

0
g(z1, ..., zn)ρ1(z1) · ·ρn(zn)dzn · ·dzn,

subject to

ρi(z) ≥ 0,
∫

Rn
+

ρi(z)dz = 1,

ai ≤
∫

Rn
+

zρi(z)dz ≤ ai, i = 1, ..., n.

It is well known that in the case of independent com-
ponents in a system, there is a functionh linking

the system reliabilityH(t) in interval [0, t] and com-
ponent reliabilities Hi(t) in the same interval. For
example, for series systems there holdsH(t) =
h(H1(t), ..., Hn(t)) =

∏n
i=1 Hi(t), for parallel systems

H(t) = h(H1(t), ..., Hn(t)) = 1 −
∏n

i=1(1 − Hi(t)).
This implies that the above optimization problem can be
rewritten

M(g) = inf
P

∫ T

0
(f(t))′h(H1(t), ...,Hn(t))dt,

M(g) = sup
P

∫ T

0
(f(t))′h(H1(t), ..., Hn(t))dt,

subject to

ai ≤
∫ T

0
(f(t))′Hi(t)dt ≤ ai, i = 1, ..., n.

Here the minimum and maximum are taken over the setP
of all possible distribution functionsHi(t) satisfying the
constraints of the problem. Basing on this representation
of the natural extension the following analytical expres-
sions have been inferred [3].

System with components in series.

If we know the lowerai and upperai mean times to failure
of the components, then the lower and upper mean times
to failure of a series system are computed as follows:

M(g) =
1

Tn−1

n
∏

i=1

ai, M(g) = min
i=1,...,n

ai.

Similarly, if the lowerai and upperai m-th moments of
time to failure of the components are known, then the co-
herent imprecisem-th moments of time to failure of a se-
ries system are computed as follows:

M(g) =
1

(Tn−1)m

n
∏

i=1

ai, M(g) = min
i=1,...,n

ai.

If we know the lowerai and upperai operating probabili-
ties before timet of components, then the lower and upper
operating probabilities before timet of a series system are:

M(g) =
n

∏

i=1

ai, M(g) =
n

∏

i=1

ai.

System with components in parallel.

If we know the lowerai and upperai mean times to failure
of components, then the lower and upper mean times to
failure of a parallel system are computed as follows:

M(g) = max
i=1,...,n

ai, M(g) = T − T
n

∏

i=1

(

1− ai

T

)

.



Similarly, if we know the lowerai and upperai m-th mo-
ments of time to failure of components, then the lower and
upperm-th moments of time to failure of a parallel system
are computed as follows:

M(g) = max
i=1,...,n

ai, M(g) = Tm−Tm
n

∏

i=1

(

1− ai

Tm

)

.

If we know the lowerai and upperai operating probabili-
ties before timet of components, then the lower and upper
operating probabilities before timet of a parallel system
are computed as follows:

M(g) = 1−
n

∏

i=1

(1− ai) , M(g) = 1−
n

∏

i=1

(1− ai) .

Example 3 Let us consider a system consisting of2 inde-
pendent components connected in series. The information
about the reliability of the components is the following:

1. First component: lower and upper mean times to fail-

ure a11 = M
′
(x1) = 13, a11 = M

′

(x1) = 14,
lower and upper second momentsa12 = M

′
(x2

1) =

160, a12 = M
′

(x2
1) = 170, lower and upper

probabilities of failure after time14 hours a13 =

M
′
(I[14,∞](x1)) = 0.3, a13 = M

′

(I[14,∞](x1)) =
0.4.

2. Second component: lower and upper second mo-

mentsa21 = M
′
(x2

2) = 120, a21 = M
′

(x2
2) = 130,

lower and upper probabilities of failure after time
6 hours a22 = M

′
(I[12,∞](x2)) = 0.8, a22 =

M
′

(I[12,∞](x2)) = 0.9.

How to find the lower and upper probabilities of the sys-
tem failure after time13 hours? This problem is difficult
enough to be solved directly through the use of either pri-
mal general optimization problem in the form (1) subject
to (2) or its dual representation. Therefore, the proposed
algorithm can be used.

Stage k=1. Letg1(x) = x (mean time to failure). Then

1. first component:M(g1) = 13, M(g1) = 13.02.

2. second component:M(g1) = 9.6, M(g1) = 11.3.

3. system:M(g1) = 0, M(g1) = 11.3.

Stage k=2. Letg2(x) = x2 (second moment). Then

1. first component:M(g2) = 169, M(g2) = 170.

2. second component:M(g2) = 120, M(g2) = 130.

3. system:M(g2) = 0, M(g2) = 130.

Stage k=3. Letg3(x) = I[12,∞](x) (probability). Then

1. first component:M(g3) = 0, M(g3) = 0.4.

2. second component:M(g3) = 0.8, M(g3) = 0.9.

3. system:M(g3) = 0, M(g3) = 0.36.

Stage k=4. Letg4(x) = I[14,∞](x) (probability). Then

1. first component:M(g4) = 0.3, M(g4) = 0.4.

2. second component:M(g4) = 0, M(g4) = 0.28.

3. system:M(g4) = 0, M(g4) = 0.112.

Thus, we have got the system lower and upper previsions
for the four different gambles. In the following stage these
previsions at system level will act as initial data to calcu-
late the reliability characteristic of interest: the probabil-
ity of failure in the time interval [13,∞).

Stage k=5. Let us break this stage into steps in or-
der to see how the number of previsions effect the preci-
sion of the characteristic to be calculated. If onlyg1 is
used for computing the system reliability measure, then
P (13 ≤ z < ∞) = 0 and P (13 ≤ z < ∞) = 0.87,
wherez is the system lifetime. If we useg1, g2, thenP = 0
and P = 0.77. If we useg1, g2, g3, thenP = 0 and
P = 0.36. If we useg1, g2, g3, g4, thenP = 0 and
P = 0.03. Therefore, the final results for the series system
areP (13 ≤ z < ∞) = 0 andP (13 ≤ z < ∞) = 0.03.

Example 4 Let us consider a parallel system consisting of
the same independent components as the system in Exam-
ple 3. ThenM(g1) = 13, M(g1) = 24.32, M(g2) = 169,
M(g2) = 300, M(g3) = 0.8, M(g3) = 0.94, M(g4) =
0.3, M(g4) = 0.568. The final results for the parallel sys-
tem: the lower probability is0.3 and the upper probability
is 0.94.

5 Concluding remarks

The current paper summarizes the authors developments
on the reliability of non-repairable systems the compo-
nents of which are quantified by interval-valued charac-
teristics.

The generalization of system reliability calculations to
interval-valued characteristics has distinguished features
that cannot be achieved in the framework of conventional
reliability theory. Among those are



1. A possibility to calculate a system reliability char-
acteristic of interest based on arbitrary sets of com-
ponents reliability characteristics. The only condi-
tion imposed is the avoiding sure loss among the re-
liability information available on the components or
groups of components.

2. The unnecessity to assume any probability distribu-
tion of time to failure.

3. Easy interval calculation of ”typical” system reliabil-
ity characteristics in case all components are quanti-
fied by the same characteristics.

4. The validity of all the formulas and the algorithm de-
veloped for precise reliability parameters. This fact
allows us to refer to the work done as the general-
ization of system reliability calculations to imprecise
previsions.

Despite all the advantages pointed out above, we profess
that they are achieved at the cost of imprecision which
rapidly increases as the number of components in a sys-
tem grows. It is clear, the lesser assumptions/constraints
are introduced, the lesser precision of a system reliability
characteristic is. For example, the absence of the judge-
ment on components independence inevitably results in a
larger imprecision. An open question is: whether the im-
precision one yields is able to make the results practical
in consequent decision-making? Nevertheless, an obvi-
ous conclusion is: one will yield higher confidence to the
quantified reliability of complex systems.
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