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In a statistical pattern recognition context, probabilistic
algorithms like parametric or nonparametric discriminant
analysis are designed to classify objects into predefined
classes. Because these methods require precise input
data, they cannot propagate uncertainties in the
classifying process. In real case studies, this could lead to
drastic misinterpretations of objects. We have thus
developed an extension of these methods to directly
propagate imprecise interval-form data. The
computations are based on interval arithmetic, which
appears to be an efficient tool to handle intervals. They
consist in calculating successively interval conditional
probability density functions and interval posterior
probabilities, whose definitions are closely associated
with the imprecise probability theory. The algorithms
eventually assign any object to a subset of classes,
consistent with the data and its imprecision. The resulting
classifying model is thus less precise, but much more
realistic than the standard one. The efficiency of this
algorithm is tested on a synthetic case study.

.H\ZRUGV� Discriminant analysis, interval arithmetic,
imprecise probabilities.

����,QWURGXFWLRQ

Supervised pattern recognition is a multivariate
technique concerned with assigning objects to predefined
categories, after observing some of their characteristics.
It covers a large range of applications. For example, in
Earth Sciences, and more particularly, in the area of
reservoir characterisation for petroleum exploration and
production, it is commonly applied to borehole data
interpretation as also to seismic data analysis [2]. In a
general context, supervised pattern recognition is first
concerned with calibrating a function between the set of

features and a set of classes with the help of a training
sample for which both features and classes are known.
This process is commonly referred to as “teaching the
classifier”. This calibrated classifier is then used to to
assign to new objects to the different classes.

In this context, discriminant analysis is a very powerful
technique. Firstly, since it works in a probabilistic frame,
probabilities of good assignment can be associated to the
predicted categories. These probabilities are valuable for
assessing the reliability of the interpretation. Secondly,
discriminant analysis provides a guide for feature
selection. This is very useful since in real situations,
numerous attributes are generally measured. Criteria
based on the performance of the discriminant function
help in selecting the parameters that are the most relevant
with respect to the prediction problem being addressed.
Thirdly, discriminant analysis through nonparametric
algorithms allows a proper identification of patterns,
even if they are highly non linear, which is quite
common in practice. Lastly, discriminant analysis can
handle categorical features, or continuous ones, as it is
the case in our paper.

Discriminant analysis, and more generally classical
classifiers, consider that the analysed features are precise.
However, in real life, this is never the case: data are
usually imprecise, and may be in some case missing.
This rises two natural questions:
- What are the consequences of this uncertainty on the

final outcome of the assignment process?
- How can this uncertainty be propagated?

In this paper, we focus on the issue of propagating
imprecision. All the considered features will be
continuous and interval-form. To propagate these
intervals, we need to define an extension of discriminant
analysis, which we call interval discriminant analysis.
This imprecise classifier is more general than most
classifiers, as it relaxes the requirement of a single output



class. This relaxation is necessary, as the imprecision on
the data gives rise to a set of probability distributions,
instead just one. The definition of this interval classifier
is thus intimately linked with the alteration from standard
probability theory to imprecise probabilities [18], and
more specifically, to credal sets [19,20].

Standard discriminant analysis will be presented in
Section 2. The extension of this classifier to intervals,
presented in Section 4, is based on interval arithmetic.
(Section 3). Lastly, Section 5 shows a synthetic
illustrative example.
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Let X be a random vector in IRp and C={C1, ..., CN}, a
predefined set of classes. Discriminant analysis [6,7,8]
aims at calibrating -and estimating the efficiency of- a
statistical relationship between C and X:

C=R(X) (1)

The classifying process is based on the Bayes rule, which
estimates the posterior probability to assign an
observation x to the class Ci:
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with: ( )jCxp , Cj’s conditional probability density

function (CPDF) ;
( )jCp , Cj’s prior probability.

In order to estimate the CPDFs p(x | Ci) on the basis of
the observation of the objects in each training subset Ci,
parametric or nonparametric algorithms may be used.
Formally, in the following, we will consider that each of
the N training subsets Ci is composed of ni objects xij. An
object is characterized by p features, and will thus be
written as xij

t = (xij
(1) ; … ; xij

(k) ; … ; xij
(p))t.

The parametric algorithm consists in assuming that each
training subset Ci is a random set from a Gaussian law,
whose parameters (mean vector µi and variance-
covariance matrix Σi) are estimated on the training
sample (Equation 3).
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In that context, two approaches are possible.

4XDGUDWLF� DSSURDFK: the mean vectors and variance-
covariance matrices are calculated independently on each
training subset Ci. The boundaries between the classes
obtained in IRp are pieces of hyperboloids or
hyperplanes, depending on the relative values of the
variance-covariance matrices.
/LQHDU� DSSURDFK: the variance-covariance matrices are
supposed to be identical for each training subset related
to Cj. The boundaries between the classes obtained in IRp

are pieces of hyperplanes.

This parametric approach may not work in real life
problems, as variables are not usually Gaussian. In such a
case, to hypothesize that these variables have a Gaussian
distribution may appear somewhat unwarranted, and lead
to erroneous conclusions. When the training sample size
is sufficient, it is thus preferable to estimate the CPDFs
with a nonparametric method. Silverman [17] reviews
various approaches available in that scope. Among the
most popular methods, is the k-nearest-neighbour
method, in which the CPDFs are inversely proportional
to the distance between x and its kth nearest neighbour in
IRp. The method has two main drawbacks: the estimated
CPDFs are highly non-differentiable and they have heavy
tails. In this paper, we concentrate upon the kernel
method for estimating the CPDFs:
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with h smoothing parameter;
K kernel function.

A particularly attractive kernel shape, for minimizing the
mean square error on the CPDF estimate, is given by
Epanechnikov [5]:
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with: Np normalisation coefficient depending on p so

that ( ) 1duuK =∫ .

Equation 5 can be rewritten with the change in variable
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or in an expanded form:
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Once the different CPDFs and posterior probabilities are
computed, the maximum likelihood rule is applied. It
means that an observation x will be assigned to the class
Ci which has maximum posterior probability ( )xCp i .
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This standard discriminant analysis algorithm provides a
first interpretation of the measurement data. Yet, it fails
to account for data errors both in the calibration and in
the assignment phases. The question we address in this
paper is mainly linked with the propagation of the
imprecision on the measurement x through the
discriminant analysis process. Before presenting the way
to do it, we summarise our motivations to model these by
intervals.

When a measurement x is processed several times under
the same experimental conditions with the same
measuring tool, outcomes usually differ from one to
another. These variations are usually explained by two
main causes. First of all, the measuring tools are never
perfectly precise. Moreover, even in such a situation,
results would vary because of environmental condition
changes between two measurements. These multiple
outcomes are then used to infer the distribution of the
quantity of interest. They may also be used to fit data
with a given distribution. Within this latter context,
errors on x are often assumed to have a Gaussian
distribution. In a statistical pattern recognition for
geophysical issues, this approach is not applicable [3],
because measurements are almost never repeated. Thus,
distributions cannot be inferred from multiple
measurements. Intervals remain then the only way to
model measurement imprecision. These intervals are
usually provided by operators. They depend on the
nominal precision of the measuring tool, and may
sometimes be majored, when there is evidence of the bad
quality of the experimental environment.

Once uncertainties are characterised, they need to be
propagated. This question has been widely studied in the
literature. Efron [4] has compared various algorithms
based on the bootstrap principle to estimate the variance
of the result. His point is to put emphasis on the errors

due to the limited size of the calibration population. The
Monte-Carlo approach is another way to propagate errors
[16]. By generating many realisations of the initial data
set and using them as inputs to the classical interpretation
process, it is possible to estimate the output distribution.
Yet, both Monte-Carlo and bootstrap methods are known
to underestimate the errors on the final result [3].

In the present paper, we aim at bounding as tightly as
possible the errors on the final results of discriminant
analysis due to errors on the measurements xi of the
training sample. This means to compute Equations 2 to 6,
by replacing real observations xij by interval observations

[ ]+−
ijij x;x . Interval arithmetic, whose principles are

explained below, allows interval-based uncertainties to
be handled.
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Interval arithmetic was first developed in [14], to
compute interval data. Recent developments of this
theory can be found in [10]. By convention, in the
following, I(IR) will designate the set of real intervals,
and I(IR)p the set of real p-dimension arrays of intervals
(also called p-dimensional pavements). The minimum of

any real interval x[ ] will be quoted −x , and its

maximum, +x .

In this section, the main interval computation properties
are defined, beginning with the four standard arithmetic
operations.
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We also need the following to define the extension of
comparison operators to intervals.

'HILQLWLRQ��� Let [ and \ be two intervals in I(IR), then

[ ] [ ]
+− >⇔ yxyx f (9)

These definitions are the basis for more complex
computations defined below.



'HILQLWLRQ� �� The inclusion function I>�@ of any real
function I�of p real variables is defined as follows:
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It is said to be optimal when

[ ] [ ]( ) ( ) [ ]{ }xxIRxfyx ∈∈==I .

For elementary functions, as the exponential, the optimal
inclusion function is easy to find:

[ ]( ) ( ) ( )[ ]+−= xexp;xexp[H[S . It is not the case for more

complex ones. Yet, combining elementary interval
function definitions given by Equation 10 with the basic
arithmetic operations (Equation 8), it is still possible to
compute the interval extension of any function. This
interval extension is called the natural inclusion function.
As pointed out by Alefeld and Herzberger [1], the width
of this interval function is generally overestimated,
especially when variables appear several times in the
equation, as it is the case in the following simple
example: Let [ ] [ ]( ) [ ] [ ]xxx �=I ; then, after Equation 8,

[ ] [ ]( ) [ ]1;11;-1 −=I  which is true in the sense of

Equation 10, but far from optimal. This is caused by the
fact that interval arithmetic computes each occurrence of
a single interval variable x[ ], as if it were an independent
variable. To overcome this drawback, the analytical
expression of the function f has to be transformed, if
possible, to avoid the redundant variables in its
mathematical formulation. For example, the previous
quadratic function would return the optimal bounds if it

were written [ ] [ ]( ) [ ]
�xx =I .

x1

x2 x[ ]I>�@��[>�@�

{y=f(x) / x   x[ ]}

O

Figure 1: Illustration of the wrapping effect

Another source of overbounding in interval computations
is known as the wrapping effect. This effect is illustrated
in Figure 1 in the case where f is a rotation of center O.
As interval computations can only generate pavements,
which edges are parallel to the main axes x1 and x2, they
necessarily generate overestimations.

In order to reduce both of these undesirable
overbounding effects, it is possible to use a “branch-and-
bound”-like algorithm [9], whose principles are

illustrated on Figure 2. This kind of iterative algorithm
was first developed in the context of global optimization
[11].

For all pavings xi[  ] in L
         subdivise xi[  ] 

Replace L by the new subpavings

Initializing
L={ x[  ] }
f*[  ](x[  ] )=f[  ](x[  ] )
fcour[  ]=

For all pavings xi[  ]  in L
         fcour[  ]=fcour[  ] ∪f[  ](xi[  ] )
f*[  ](x[  ])=f*[  ](x[  ])∩fcour[  ]

Branching

Bounding

xi[  ] < ε ?

yes

no

return f*[  ](x[  ])

Figure 2: “branch-and-bound” algorithm

As shown in Figure 2, the “branch-and-bound” algorithm
allows to compute successive bounds to any interval
function f*[ ] which have decreasing width, by subpaving
more and more closely the initial pavement x[ ]. Although
this algorithm is quite popular for sake of simplicity, it
does not converge very quickly.

These concepts will be applied to Equations 2 to 6 to
integrate errors in variables in the discriminant analysis
model. The integration of uncertainties leads to compute
interval probabilities.

����,QWHUYDO�'LVFULPLQDQW�$QDO\VLV

In order to build an interval discriminant analysis
algorithm, we have to extend the three main steps in the
standard algorithm to intervals:
- Computation of interval CPDFs;
- Computation of interval posterior probabilities;
- Building the interval classifier.

It could be argued that one could have used standard
optimization methods [13] to compute bounds from these
intervals. Yet, in many real life problems, this solution is
inconceivable, because of its computational cost. Interval
arithmetic thus appears as a more feasible alternative to
propagate uncertainty.

�����,QWHUYDO�3UREDELOLW\�'HQVLW\�)XQFWLRQV
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To build an interval arithmetic based nonparametric
discriminant analysis, we first have to compute an



interval extension for Equation 6, which is a weighted
sum of quadratic terms. Each term is easily extended to
intervals, using basic interval arithmetic definitions
(Equation 8). Figure 3 shows the resulting optimal
interval kernel function when only one attribute is taken
under consideration (p=1).

xij
++x+-h xij

-+x-+hxij
-+x--h xij

++x++h

xij
++x+xij

-+x-

3/4

0

K+

K-

Figure 3: The interval Epanechnikov kernel (p=1)

In Figure 3, it must be noticed that the upper and lower
bounds depend directly on h, and on the uncertainties on
observations x and xij. In some cases (when xij

++x+-h>xij
-

+x-+h), the lower bound can be equal to the null function.
Imprecision on the kernel interval estimate, and thus on
the interval CPDF, is then maximum.

When p>1, using basic interval arithmetic definitions
would lead to overestimate the interval kernel, because of

the constraint 1
h

xx ij <
−

 in Equation 6, which expresses

a dependency between each component xij
(k). To

overcome this problem, we have to recall that both
bounds of the multivariate interval kernel must remain
positive. Integrating this simple condition is sufficient to
get the optimal multivariate kernel inclusion function
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The CPDF calculations are then straightforward, since
Equation 3 is a sum of independent kernel functions. The
interval extensions of the CPDFs will then be:
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Equation 11 outcomes the optimal interval extension of
the nonparametric CPDFs, in the sense that the resulting
interval is as tight as possible.

�������3DUDPHWULF�$SSURDFK

To extend the Gaussian CPDF (Equation 3) to intervals
implies to compute the inclusion function:
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When p=1, the extension of a Gaussian CPDF is
straightforward to compute, as in the nonparametric case,
once the mean µi[ ] and the variance σ2

i[ ] have been
enclosed (Figure 4). Bounds of µi[ ] are computed with
the basic interval arithmetic rules (Equation 8). In order
to estimate the bounds of σ2

i[ ], simple optimization
procedures (as the conjugate gradient method) are used
to solve the following constrained problems:
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These methods are local optimization algorithms.
However, in the particular case of Equations 13, because
the variance is a convex function with respect to the
variables xij, the local minimum (or maximum), is also a
global minimum (or maximum). These methods thus
outcome the exact interval variance, given the
imprecision on the data.

p-
[ ]( x | Ci)

p+
[ ](x | Ci)

x

mi [ ]

Figure 4: The interval Gaussian distribution (p=1)

Note that this computation of this interval Gaussian
CPDF is nevertheless not optimal. The overestimation of
the interval CPDFs results from the fact that we have
considered independently the means and variances in the
interval computations. Formally, this is not true and the
computed CPDFs are only approximations.

In the multivariate case (p>1), the extension of a
Gaussian distribution is more complex. The natural
inclusion function of Equation 12 usually leads to
compute very wide intervals. This overbounding is due to
the wrapping effect. It is amplified as the expression
(x-µi) occurs several times in Equation 3. To minimize
these effects, the following algorithm was developed:



1- Computation of the p(p+1)/2 distinct interval terms
of the variance-covariance matrix Σi using a
conjugate gradient method to find the minimum and
maximum of the experimental covariances :
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all indexes l and m. This first step allows to compute
the interval experimental variance-covariance
matrices Σi[ ], which is optimal for the same reason as
in the univariate case.

2- “Diagonalization” of the interval Σi[ ] matrix. This
diagonalization is achieved in two substeps: The
interval matrix is first pre- and post- multiplied by
the rotation matrix Rθ which would diagonalize the
real matrix (Σi

-+ Σi
+)/2. This preconditioning step,

known as the interval Jacobi method [15] transforms
Σi[ ] into an interval matrix Σ’ i[ ] whose non-diagonal
terms have minimal width. The interval matrix Σ’ i[ ]

is then replaced by an including interval diagonal
matrix Σ’’ i[ ] whose out-diagonal terms are null. This
operation necessarily amplifies the width of diagonal
terms. Finally, obtaining Σ’’ i[ ] is equivalent to
searching the set of eigenvalues of Σi[ ], but
considering that the eigenvectors of this imprecise
matrix are known.

At the end of this step, problem formulated by Equation
12 is replaced by finding the interval function p’[ ].

[ ] [ ]( ) [ ] [ ]( )
[ ] [ ]( ) [ ] [ ] [ ]( )

( ) [ ]
21

i
2p

R’’R
2

1

ii

’’2

e

CpC’p

1
i

tt

Σπ
=

⊇

−Σ−− θ
−

θ LL
[[

[[

(14)

Step 2 is the major source of approximation in the
interval computations, mainly because we have explained
the imprecision on the interval variance-covariance
matrix by the imprecision on eigenvalues computed in a
fixed basis, which is a simplification of the problem.

3- Because of the rotation matrix Rθ, the direct
application of interval natural inclusion to Equation
14 is not optimal. We thus have to refine the
inclusion function by subpaving ([>�@�µL>�@) into ns

disjoint subdomains ;N>�@. By using the same
“branch-and-bound” algorithm principle, we
compute on each of these ns pavements an interval
natural inclusion function pk[ ]([>�] | Ci, [�µL∈;N>�@).
The CPDF interval is then computed as:
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These interval functions are not optimal inclusions of
Gaussian CPDFs. However, they are tighter enclosures of
these functions, and are thus preferable to the interval
natural inclusion functions.
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Once the interval CPDFs have been computed, it is
straightforward to extend the Bayes rule to interval
probabilities. To obtain directly the optimal enclosure,
Equation 2 must be rewritten as:
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Using the interval arithmetic basic rules, the interval
posterior probability optimal bounding functions are
then:
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These interval posterior probabilities p[ ](Ci | [>�@) may be
seen as a particular application of credal sets [12,19,20],
which are defined as convex sets of probability
distributions bounded by linear constraints.
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The final step of the classifying procedure consists in
assigning the imprecise object [>�@ to a subset of possible
classes. Two criteria based on the interval extension of
the maximum likelihood rule are defined.

The first one is based on the direct comparison of the
different p[ ](Ci | [>�@), i=1…N. We have to find which of
these intervals are dominated, by using the interval
extension of comparison (Definition 2). The subset of
dominated classes is then discarded from the set of
possible output classes. The interval posterior
probabilities of the remaining undominated classes thus
necessarily overlap. This subset is the final outcome of
the classifying procedure. This criterion is also known in
the literature as strong dominance criterion [20].

However, as we have stated in Section 2, p[ ](Ci | [>�@) may
also be seen as bounds to sets of posterior probabilities,
when the CPDFs vary in the intervals p[ ]([>�@ | Ci), and the
prior probabilities, in the intervals p[ ](Ci). In this case,
the strong dominance criterion necessarily overestimates



the assignment uncertainty. This overestimation may be
explained by considering that, as all the interval
probabilities depend on the same quantities
p[ ]([>�@ | Ci).p[ ](Ci), they are not independent.

A less pessimistic criterion to discard the dominated
classes is based on the direct comparison of the intervals
p[ ]([>�@ | Ci)p[ ](Ci), i=1…N. Before doing so, we sort the
values of p+([>�@ | Ci)p

+(Ci) by decreasing order:

[ ]( ) ( ) [ ]( ) ( )
NN11 iiii Cp.Cp...Cp.Cp ++++ ≥≥ [[ (18)

Then, using the basic definition for comparisons of
intervals (Equation 10), it holds:

If [ ]( ) ( ) [ ]( ) ( )
NN11 iiii Cp.CpCp.Cp ++−− ≥ [[ , [>�@ is

assigned into 
1iC . Otherwise, the algorithm cannot

assign among 
1iC  and 

2iC , and we repeat the former

test with 
1iC and 

3iC ; … ; 
1iC and 

{ }piC , until

[ ]( ) ( ) [ ] { }( ) { }( )
pp11 iiii Cp.CpCp.Cp ++++ ≥ [[ .

This criterion is the credal dominance criterion as
defined in [20], in the case where CPDFs are bounded by
pavements. It is optimal when the quantities
p[ ]([>�@ | Ci).p[ ](Ci) are independent. This is actually the
case when interval CPDFs are estimated by the
nonparametric algorithm, or the quadratic approach of
the parametric algorithm. In the linear approach, it is not.
The credal criterion then overestimates the assignment
uncertainty. To improve it, the last remaining solution is
to use a branch-and-bound algorithm, as defined in
Section 2.

As a conclusion, the imprecisions on the observations of
the training sample have been propagated in a
discriminant analysis algorithm. These imprecisions on
the data points generate uncertainties on the CPDFs and
on the posterior probabilities, which cause uncertain
assignments.

����&DVH�6WXG\

In order to illustrate these theoretic developments of
interval discriminant analysis, we show a very simple
synthetic case study. In this example, we want to
calibrate an interval classifying function between objects
defined by two features x and y and three predefined
classes. To train the classifier, 100 data per class are
available. Figure 5 shows that the three training classes
are well separated. This usually implies that the two
features are discriminant enough to build a good-quality
classifier.

C1

C2

C3

y

x

A

Figure 5: Training sample in the plane (x; y)

In this section, we will only show the results obtained by
the quadratic approach to standard and interval
discriminant analyses. For the interval algorithm, we will
consider that the imprecision is ±0.07 on the data’s first
feature, and ±0.11 on the data’s second feature.

Figure 6 shows the calibrated function C(x; y) obtained
by standard discriminant analysis. The plane (x; y) is
then simply splitted into three parts, separated by
hyperbolic boundaries. It is consequently possible to
assign any object (x, y) to a specific class. Zones
characteristic of each training class are also circled and
dashed on Figure 6.

C1

C2

C3
A
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Figure 6: Calibrated classifying function in the plane
(x;y)

However, because of the requirement of precision of this
standard approach, the assignment may appear somewhat
arbitrary, especially in zones of the plane (x; y) near the
boundaries between each class. Moreover, in the region
named A, the calibrated function predicts class C2,
although on Figure 1, it appears to be much closer from
the training subsets C1 and C3.

By relaxing this precision requirement, an interval
classifier is calibrated. Table 1 summarises the interval
means and variance-covariance matrices of the different
classes.



Ci µi[ ] Σi[ ]

1 [ ]
[ ]





−− 95.1;17.2

13.2;99.1 [ ] [ ]
[ ] [ ] 







−−
−−

418.0;310.0054.0;118.0

054.0;118.0130.0;093.0

2 [ ]
[ ] 





 −

17.2;95.1

04.0;10.0 [ ] [ ]
[ ] [ ] 







−
−

507.0;387.0000.0;067.0

000.0;067.0130.0;093.0

3 [ ]
[ ]





−−
−−

88.1;10.2

97.1;11.2 [ ] [ ]
[ ] [ ]





497.0;378.0158.0;090.0

158.0;090.0123.0;086.0

Table 1: Summary of interval means and variance-
covariance matrices for each class

The procedure described in Section 4.1.2 is then applied
in order to estimate the associated interval diagonal Σ’’ i[ ]

and rotation Rθ matrices (Table 2).

Ci Rθ Σ’’ i[ ]

1





 −

955,0294,0

294,0955,0 [ ]
[ ]





0.536 ; 0.2160

00,146 ; 0.031

2





 −

995,0099,0

099,0995,0 [ ]
[ ]





0.517 ; 0.3630

00.139 ; 0.082

3






− 949,0314,0

314,0949,0 [ ]
[ ]





0.645 ; 0.2310

00.123 ; 0.012

Table 2: Rotation matrices and interval eigenvalues for
each class

In order to improve the estimation of the interval CPDFs,
each initial mean pavement was parted into 20
subdomains.

To check the efficiency of this subpaving approach, we
show the step-by-step computations involved in the
assignment of an object [
>�@=([0.93,1.07];[-0.11;0.11]).
Table 3 illustrates the sharpening of the interval CPDFs
obtained by using these procedures. For each class, it
compares the quantities p[ ]([
>�@ | Ci), obtained with the
direct interval natural extension IE (Equation 12), with
Equation 14 (IE2), and after refining the IE2
approximation by subpaving the initial interval mean
pavements into 20 subdomains (IE3). In Table 3, the
results provided by the first two algorithms (IE and IE2)
are not relevant to our problem, because the width of the
output intervals is very large, and the three interval
CPDFs intervals overlap. However, IE2 provides tighter
enclosures of the CPDFs. At least, IE3 improves
tremendously the accuracy of the estimation.

Ci IE IE2 IE3
1 [0;+�> [2.10-38;1.106] [1.10-7;6.10-3]
2 [8.10-37;3.10-1] [9.10-11;8.10-2] [3.10-5;3.10-3]
3 [0;+�> [1.10-461;3.1074] [1.10-105;3.10-13]
Table 3: Comparison of three interval estimations of
p[ ]{[
>�@ | Ci}

Table 4 reports the resulting interval posterior
probabilities, computed with the generalised Bayes rule.
As it could be expected, both IE and IE2 generate non-
informative posterior probabilities [0;1] for all the
classes. IE3 outcomes more precise results, as p(C3 | [



>�@)

is null. As a result, IE and IE3 cannot assign the object
among the three classes, whereas IE3 only produces the
outcome {C1, C2}. Note that for this object, the results
are the same with both dominance criteria.

Ci IE IE2 IE3
1 [0;1] [0;1] [0.01;0.99]
2 [0;1] [0;1] [0.01;0.99]
3 [0;1] [0;1] [0;0]
Table 4: Comparison of three interval estimations of
p[ ]{Ci | [
>�@

After illustrating the propagation of imprecision on the
assignment of a particular object, it is worth examining
the general results of algorithm IE3, which appear much
more efficient than the two others. Figure 7 maps the
possible assigned classes in the attribute space (x;y) . For
example, the white zone correspond to objects which
could not be assigned among the three classes.

A 1

1/2/3

2/3 1/2

3

2
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Figure 7: Calibrated imprecise classifying function in the
plane (x; y)

We notice that regions where the assignment is uncertain
correspond to the boundary regions between the 3 classes
shown on Figure 6. This statement is a clear evidence
that in these zones, the assignment between two or more
classes is not evident. Furthermore, in region A, the
interval classifier is not able to assign between any class.
Usually, this situation appears for objects which are very
different from the training population. In this case, very
low CPDFs are computed, associated with a non-
negligible level of uncertainty.

As a conclusion, the imprecise classifying model built in
this synthetic case study appears to be much more
realistic than the standard one. The use of intervals also
prevents us from predicting arbitrary precise class for
objects which cannot be discriminated between the
predefined classes.



����&RQFOXVLRQ

In many real-life issues, classifying is a strong need to
make the measured features more valuable. So far,
discriminant analysis was proved to be an efficient tool
to achieve this purpose. Yet, this statistical method fails
to assess the imprecision on the interpreted model due to
the measurement errors.

This paper has shown a direct application of interval
analysis to solve this problem. More specifically, it gives
a quantitative assessment of the stability of predicted
class, given by the standard algorithm. It also requires
less prior knowledge on the studied objects: for example,
it does not require any knowledge on the exact
distribution of measurement errors, as the Monte-Carlo
methods do. Moreover, the solution given by interval
analysis is always reliable, because of the inclusion
property. As a consequence, it provides a much more
realistic interpretative model of the studied objects.
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