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features and a set of classes with the help of a training
Abstract sample for which both features and classes are known.
This process is commonly referred to as “teaching the
classifier”. This calibrated classifier is then used to to

In a statistical pattern recognition context, probabilistic™ <> ; .
assign to new objects to the different classes.

algorithms like parametric or nonparametric discriminant

analysis are designed to classify objects into predefinetﬂJ thi text. discriminant vsis i ful
classes. Because these methods require precise inpri IS context, discriminant analysis 1S a very poweriu

data, they cannot propagate uncertainties in thé;echnique. Firstly, since it works in a probabilistic frame,
classifying process. In real case studies, this could lead tBrObfab'"t'eS of go_od assignment Ca’_‘_*?e associated to the
drastic misinterpretations of objects. We have thusper'Ct(_ad categon_es._ _These pro_babllltles are valuable for
developed an extension of these methods to directl)gssessmg the reliability of the interpretation. Secondly,

propagate  imprecise  interval-form  data. Thedlscrlmmant analysis provides a guide for feature

computations are based on interval arithmetic, whichseleCt'on' Thls_ is very useful since in real S|tuat|c'>nsl,
umerous attributes are generally measured. Criteria

appears to be an efficient tool to handle intervals. The e :
ased on the performance of the discriminant function

consist in calculating successively interval conditional . ;
help in selecting the parameters that are the most relevant

probability density functions and interval posterior h h dicti blem bei dd q
probabilities, whose definitions are closely associate Ith respect to the prediction problem being addressed.
hirdly, discriminant analysis through nonparametric

with the imprecise probability theory. The algorithms laorith I dentificati f patt
eventually assign any object to a subset of classe§'90Mthms allows a proper identification ot patterns,
ven if they are highly non linear, which is quite

consistent with the data and its imprecision. The resultin . i L .
classifying model is thus less precise, but much mor ommon in pra_ctlce. Lastly, d|scr|m|nant analysis can
andle categorical features, or continuous ones, as it is

realistic than the standard one. The efficiency of thish ;
algorithm is tested on a synthetic case study. the case In our paper.

Discriminant analysis, and more generally classical
classifiers, consider that the analysed features are precise.
However, in real life, this is never the case: data are
usually imprecise, and may be in some case missing.
This rises two natural questions:

What are the consequences of this uncertainty on the
final outcome of the assignment process?

How can this uncertainty be propagated?

Keywords. Discriminant analysis, interval arithmetic,
imprecise probabilities.

1 Introduction

Supervised pattern recognition is a multivariate
technique concerned with assigning objects to predefined
categories, after observing some of their characteristics.
It covers a large range of applic.ations. Fpr example, i n this paper, we focus on the issue of propagating
Earth Smences, and more particularly, in the aréa Olmprecision. All the considered features will be
reservoir characterisation for petroleum exploration an

ducti s I lied borehole d ontinuous and interval-form. To propagate these
production, it is commonly applied to borehole ataintervals, we need to define an extension of discriminant

interpretation as also to_ seismic data analy§!s [2.]' "_1 aanalysis, which we call interval discriminant analysis.
general context, supervised pattern recognition is flrstl-his imprecise classifier is more general than most

concerned with calibrating a function between the set Ofclassifiers, as it relaxes the requirement of a single output



class. This relaxation is necessary, as the imprecision on
the data gives rise to a set of probability distributions,
instead just one. The definition of this interval classifier
isthusintimately linked with the alteration from standard
probability theory to imprecise probabilities [18], and
more specificaly, to credal sets[19,20].

Standard discriminant analysis will be presented in
Section 2. The extension of this classifier to intervals,
presented in Section 4, is based on interval arithmetic.
(Section 3). Lastly, Section 5 shows a synthetic
illustrative example.

2 Standard Discriminant Analysis
2.1 Algorithm

Let X be a random vector in IR” and C={C,, .., Cy\}, a
predefined set of classes. Discriminant anaysis [6,7,8]
aims at calibrating -and estimating the efficiency of- a
statistical relationship between C and X:
C=R(X) (1)

The classifying process is based on the Bayes rule, which

estimates the posterior probability to assign an
observation x to the class C;:

plCi|x)= p(c))plx|C)

2
5 plC; Jolx|C; @
J

with: p(x|CJ-), Ci's conditional probability density

function (CPDF) ;
p(C | ) Cj’sprior probability.

In order to estimate the CPDFs p(x | C) on the basis of
the observation of the objects in each training subset C;,
parametric or nonparametric algorithms may be used.
Formally, in the following, we will consider that each of
the N training subsets C; is composed of n; objects x;;. An
object is characterized by p features, and will thus be
written as xi' = ;P ; ... ;%5 )

The parametric algorithm consists in assuming that eac
training subset Gs a random set from a Gaussian law,

whose parameters (mean vectgs and variance-
covariance matrixY;) are estimated on the training
sample (Equation 3).

1 -
_ 1 =20 ) = (x
thlc)= (2P °
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In that context, two approaches are possible.

Quadratic approach:. the mean vectors and variance-
covariance matrices are calculated independently on each
training subset C The boundaries between the classes
obtained in IR are pieces of hyperboloids or
hyperplanes, depending on the relative values of the
variance-covariance matrices.

Linear approach: the variance-covariance matrices are
supposed to be identical for each training subset related
to G. The boundaries between the classes obtained’in IR
are pieces of hyperplanes.

This parametric approach may not work in real life
problems, as variables are not usually Gaussian. In such a
case, to hypothesize that these variables have a Gaussian
distribution may appear somewhat unwarranted, and lead
to erroneous conclusions. When the training sample size
is sufficient, it is thus preferable to estimate the CPDFs
with a nonparametric method. Silverman [17] reviews
various approaches available in that scope. Among the
most popular methods, is the k-nearest-neighbour
method, in which the CPDFs are inversely proportional
to the distance between x and itsnearest neighbour in

IRP. The method has two main drawbacks: the estimated
CPDFs are highly non-differentiable and they have heavy
tails. In this paper, we concentrate upon the kernel
method for estimating the CPDFs:

<~ Xij
plx|C)= hp ;KH (@)
with  h  smoothing parameter;
K  kernel function.

A particularly attractive kernel shape, for minimizing the
mean square error on the CPDF estimate, is given by
Epanechnikov [5]:

Eﬁ(u) g;:(l UU)If |uj<1

d
H((u) = 0 otherwise

®)

with: N, normalisation coefficient depending on p so

thatIK(u)du =1.

Equation 5 can be rewritten with the change in variable

u—x_xij'

==t
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éK hXUE 0 otherwise

(6)



or in an expanded form:

ey
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%Ez 0 otherwise
(7

Once the different CPDFs and posterior probabilities are
computed, the maximum likelihood rule is applied. It
means that an observation x will be assigned to the class

C; which has maximum posterior probability p(Ci |x)

2.2 Uncertainties

This standard discriminant analysis algorithm provides a
first interpretation of the measurement data. Yet, it fails
to account for data errors both in the calibration and in
the assignment phases. The question we address in this
paper is mainly linked with the propagation of the
imprecision on the measurement x through the
discriminant analysis process. Before presenting the way
to do it, we summarise our motivations to model these by
intervals.

When a measurement x is processed several times under
the same experimental conditions with the same
measuring tool, outcomes usually differ from one to
another. These variations are usually explained by two
main causes. First of al, the measuring tools are never
perfectly precise. Moreover, even in such a situation,
results would vary because of environmental condition
changes between two measurements. These multiple
outcomes are then used to infer the distribution of the
guantity of interest. They may aso be used to fit data
with a given distribution. Within this latter context,
errors on X are often assumed to have a Gaussian
distribution. In a dtatistical pattern recognition for
geophysical issues, this approach is not applicable [3],
because measurements are amost never repeated. Thus,
distributions cannot be inferred from multiple
measurements. Intervals remain then the only way to
model measurement imprecision. These intervals are
usually provided by operators. They depend on the
nominal precision of the measuring tool, and may
sometimes be majored, when there is evidence of the bad
quality of the experimental environment.

Once uncertainties are characterised, they need to be
propagated. This question has been widely studied in the
literature. Efron [4] has compared various algorithms
based on the bootstrap principle to estimate the variance
of the result. His point is to put emphasis on the errors

due to the limited size of the calibration population. The
Monte-Carlo approach is another way to propagate errors
[16]. By generating many realisations of the initial data
set and using them as inputs to the classical interpretation
process, it is possible to estimate the output distribution.
Y et, both Monte-Carlo and bootstrap methods are known
to underestimate the errors on the final result [3].

In the present paper, we aim at bounding as tightly as
possible the errors on the final results of discriminant
analysis due to errors on the measurements x; of the
training sample. This means to compute Equations 2 to 6,
by replacing real observations x;; by interval observations
[xi] ;x; Interval arithmetic, whose principles are

explained below, alows interval-based uncertainties to
be handled.

3 Interval Arithmetic: Basic Concepts

Interval arithmetic was first developed in [14], to
compute interval data. Recent developments of this
theory can be found in [10]. By convention, in the
following, I(IR) will designate the set of real intervals,
and I(IR)P the set of real p-dimension arrays of intervals
(also called p-dimensional pavements). The minimum of
any red interval x;; will be quoted x~, and its

maximum, x*.

In this section, the main interval computation properties
are defined, beginning with the four standard arithmetic
operations.

Definition 1. Let x:[x‘ ;x*] and y:[y’ ;y*] be two
intervalsin I(IR). Then,

D‘[]’“y[]—[x +y ixtay']

%[1 y[]_x =y ixt -y

O Xy = mm{x'y';x'y*;x*y';x*y*};
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We aso need the following to define the extension of
comparison operatorsto intervals.

Definition 2. Let x and y be two intervalsin I(IR), then
X{1=Yypy o X" >y ©)

These definitions are the basis for more complex
computations defined below.



Definition 3. The inclusion function f;; of any rea
function f'of p real variablesis defined as follows:

JA(R)” = I(IR
£y IR ~1(R) 10
x(p Py O{y=f(x)OIR| xOx}
It is said to be optimal when

fib )=ty =t DIR xDx }.

For elementary functions, as the exponential, the optimal
inclusion function is easy to find:

expy(x) = [exp(x‘); exp(x*)] . It is not the case for more

complex ones. Yet, combining elementary interval
function definitions given by Equation 10 with the basic
arithmetic operations (Equation 8), it is still possible to
compute the interval extension of any function. This
interval extension is called the natural inclusion function.
As pointed out by Alefeld and Herzberger [1], the width
of this interval function is generally overestimated,
especially when variables appear severa times in the
equation, as it is the case in the following simple
example: Let f ](x[ ]):x[ 1-X[ 1; then, after Equation 8,

fi1(-11)=[-1;1] which is true in the sense of

Equation 10, but far from optimal. This is caused by the
fact that interval arithmetic computes each occurrence of
asingle interval variable x;;, asif it were an independent
variable. To overcome this drawback, the analytica
expression of the function f has to be transformed, if
possible, to avoid the redundant variables in its
mathematical formulation. For example, the previous
quadratic function would return the optimal bounds if it

werewritten f; ,(x;;)=x(,"

fii(x1) x2 X1

- »

x1

Ty= I x )

Figure 1: lllustration of the wrapping effect

Another source of overbounding in interval computations
is known as the wrapping effect. This effect isillustrated
in Figure 1 in the case where f is a rotation of center O.
As interval computations can only generate pavements,
which edges are parallel to the main axes x1 and x2, they
necessarily generate overestimations.

these undesirable

In order to reduce both of

illustrated on Figure 2. This kind of iterative algorithm
was first developed in the context of global optimization
[11].

L={ xt1}
Initializing fratxen)=fraxe)
fecour 1= o
[
] For al pavings xi[ 1in L
Branching subdivise xif ]
Replace L by the new subpavings
l
For al pavings xif 1 in L
Bounding fcourp 1=fcoury 1 Off 1(xi[ 1)
* L(xe )=f* L1(x 1) nfecour ]

return f*[ 1(x 1)

Figure 2: “branch-and-bound” algorithm

As shown in Figure 2, the “branch-and-bound” algorithm
allows to compute successive bounds to any interval
function *; which have decreasing width, by subpaving
more and more closely the initial pavemept Although

this algorithm is quite popular for sake of simplicity, it
does not converge very quickly.

These concepts will be applied to Equations 2 to 6 to
integrate errors in variables in the discriminant analysis
model. The integration of uncertainties leads to compute
interval probabilities.

4 Interval Discriminant Analysis

In order to build an interval discriminant analysis
algorithm, we have to extend the three main steps in the
standard algorithm to intervals:

- Computation of interval CPDFs;

- Computation of interval posterior probabilities;

- Building the interval classifier.

It could be argued that one could have used standard
optimization methods [13] to compute bounds from these
intervals. Yet, in many real life problems, this solution is
inconceivable, because of its computational cost. Interval
arithmetic thus appears as a more feasible alternative to
propagate uncertainty.

4.1 Interval Probability Density Functions

4.1.1 Nonparametric approach

overbounding effects, it is possible to use a “branch-andTg puild an interval arithmetic based nonparametric

bound”-like algorithm [9],

whose principles are discriminant analysis, we first have to compute an



interval extension for Equation 6, which is a weighted
sum of quadratic terms. Each term is easily extended to
intervals, using basic interval arithmetic definitions
(Equation 8). Figure 3 shows the resulting optimal
interval kernel function when only one attribute is taken
under consideration (p=1).

Xij +X° Xij +x*
3/
}X*.
0- - + + - - + +
Xi#x-h XX xii+xc+h x4 +h

Figure 3: The interval Epanechnikov kernel (p=1)

In Figure 3, it must be noticed that the upper and lower
bounds depend directly on h, and on the uncertainties on
observations x and X;;. In some cases (When x;;"+x"-h>x;;
+x"+h), the lower bound can be equal to the null function.
Imprecision on the kernel interval estimate, and thus on
the interval CPDF, is then maximum.

When p>1, using basic interval arithmetic definitions
would lead to overestimate the interval kernel, because of

X_Xij

the constraint ———| <1 in Equation 6, which expresses

a dependency between each component x;®. To
overcome this problem, we have to recall that both
bounds of the multivariate interval kernel must remain
positive. Integrating this simple condition is sufficient to
get the optimal multivariate kernel inclusion function

- X..
K, [] i u[]%

The CPDF caculations are then straightforward, since
Equation 3 is a sum of independent kernel functions. The
interval extensions of the CPDFs will then be:

1 - X;
ail1| )= 3 a1

Equation 11 outcomes the optimal interval extension of
the nonparametric CPDFs, in the sense that the resulting
interval isastight as possible.

4.1.2 Parametric Approach

To extend the Gaussian CPDF (Equation 3) to intervals
implies to compute the inclusion function:

e—%(x[ =mf ) 57 ey 1)

p[](xulci)=W

(12)

When p=1, the extension of a Gaussian CPDF is
straightforward to compute, as in the nonparametric case,
once the mean p; and the variance 0%(; have been
enclosed (Figure 4). Bounds of p; are computed with
the basic interval arithmetic rules (Equation 8). In order
to estimate the bounds of o%;;, simple optimization
procedures (as the conjugate gradient method) are used
to solve the following constrained problems:

) H1 1
S = Min —— =YX,
I X35 DX ]*Djani _1% %” n % |k§

q (13)

+ 1 1

2= Max O— Z%ﬁj_—zxikg
XiiDXii[]'Dlani 17 N;

These methods are local optimization algorithms.
However, in the particular case of Equations 13, because
the variance is a convex function with respect to the
variables x;;, the local minimum (or maximum), is also a
global minimum (or maximum). These methods thus

outcome the exact interval variance, given the
imprecision on the data.

m

<%

0.25 +

. p(x|C)

o.0g

X

-4 -2 2 4

Figure 4: The interval Gaussian distribution (p=1)

Note that this computation of this interval Gaussian
CPDF is nevertheless not optimal. The overestimation of
the interval CPDFs results from the fact that we have
considered independently the means and variances in the
interval computations. Formally, this is not true and the
computed CPDFs are only approximations.

In the multivariate case (p>1), the extension of a
Gaussian distribution is more complex. The natural
inclusion function of Equation 12 usualy leads to
compute very wide intervals. This overbounding is due to
the wrapping effect. It is amplified as the expression
(x-1;) occurs severa times in Equation 3. To minimize
these effects, the following algorithm was devel oped:



1- Computation of the p(p+1)/2 distinct interval terms These interval functions are not optimal inclusions of
of the variance-covariance matrix X; using a Gaussian CPDFs. However, they are tighter enclosures of
conjugate gradient method to find the minimum and these functions, and are thus preferable to the interval
maximum of the experimental covariances: natural inclusion functions.

1 z%ij(l) _iink(l)%ij(m) —izxik(m)g for 4.2 Interval posterior probabilities
n; =15 n; n; k

all indexes | and m. This first step alows to compute Once the interval CPDFs have been computed, it is
the interval experimental  variance-covariance straightforward to extend the Bayes rule to interval
matrices X ;, which is optimal for the same reason as probabilities. To obtain directly the optimal enclosure,
in the univariate case. Equation 2 must be rewritten as:

2- “Diagonalization” of the intervak; matrix. This p(C-)p(x|C-)B_l
.d|agonal|zat|pn.|s.ach|eved in two subsfteps: The p(Ci|x):§+ j j (16)
interval matrix is first pre- and post- multiplied by o i piCi jp(x|ci j%
the rotation matrix Rwhich would diagonalize the
real matrix &+ Z")/2. This preconditioning step,
known as the interval Jacobi method [15] transforms
2 into an interval matrix’;;; whose non-diagonal
terms have minimal width. The interval matii,
is then replaced by an including interval diagonal
matrix " i} whose out-diagonal terms are null. This 7 Q p(Cj )+
operation necessarily amplifies the width of diagonal p (Ci X[ ]):
terms. Finally, obtainingZ”; is equivalent to H H 17 p(Ci)
searching the set of eigenvalues @f;, but U -
considering that the eigenvectors of this imprecise % p(C-)" (x[ ]|C-)_E
matrix are known. +(Ci |x[ ]):H + (CJ) O

j:tip i

Using the interval arithmetic basic rules, the interval
posterior probability optimal bounding functions are
then:

17)

At the end of this step, problem formulated by Equation 5

121is replaced by finding the interval functio;p These interval posterior probabilitieg(€; | x;;) may be

, ( C)D ( C) seen as a particular application of credal sets [12,19,20],
P11 G Opp |G which are defined as convex sets of probability

e_%(x[ i ])tRetz,,i_hRe(x[ - ]) (14) distributions bounded by linear constraints.

(ZH)p/2|Z”i[ ]|]/ 2 4.3 Interval classifier

The final step of the classifying procedure consists in
Step 2 is the major source of approximation in theassigning the imprecise objegt to a subset of possible
interval computations, mainly because we have explainedlasses. Two criteria based on the interval extension of
the imprecision on the interval variance-covariancethe maximum likelihood rule are defined.
matrix by the imprecision on eigenvalues computed in a
fixed basis, which is a simplification of the problem. The first one is based on the direct comparison of the
different g(Gi |x;;), i=1...N. We have to find which of
3- Because of the rotation matrix gRthe direct these intervals are dominated, by using the interval
application of interval natural inclusion to Equation extension of comparison (Definition 2). The subset of
14 is not optimal. We thus have to refine the dominated classes is then discarded from the set of
inclusion function by subpavingx(-4,) into n,  possible output classes. The interval posterior
disjoint subdomainsX;;;. By using the same probabilities of the remaining undominated classes thus
“branch-and-bound” algorithm  principle, we necessarily overlap. This subset is the final outcome of
compute on each of thesg pavements an interval the classifying procedure. This criterion is also known in
natural inclusion function y(x;1 | G, x-40Xy)). the literature as strong dominance criterion [20].

The CPDF interval is then computed as:
However, as we have stated in Section 2| x;;) may

e 1C) =) (e | X~ OX 15 also be seen as bounds to sets of posterior probabilities,
p[]( il ') Lkak”( []| TR k[])( ) when the CPDFs vary in the intervajs(j,, | G), and the
prior probabilities, in the intervals; C). In this case,

the strong dominance criterion necessarily overestimates



the assignment uncertainty. This overestimation may be oY
explained by considering that, as al the interval
probabilities depend on the same quantities
Pr1(x /1 Gi).pr1(Gi), they are not independent.

A less pessimistic criterion to discard the dominated
classes is based on the direct comparison of the intervals
Pr1(xr7 1 Cppi(G), i=1...N. Before doing so, we sort the
values of p(x;,; | G)p*(Ci) by decreasing order:

ol e o, )z 2yl Jotle,)  a®)

Then, using the basic definition for comparisons of
intervals (Equation 10), it holds:

If p‘(x[ ]‘Cil)p‘(cil)z p*(x[ ]‘CiN )p*(CiN), X;; is In this section, we will only show the results obtained by

the quadratic approach to standard and interval

discriminant analyses. For the interval algorithm, we will

assign amongC;, and C;,, and we repeat the former consider that the imprecision 46.07 on the data’s first

test with C; and C; ; ; Cj, and Ci{p,, until feature, and0.11 on the data’s second feature.

p+(x[ ]‘Cil)p+(cil)2 p* (x[ ]‘Ci{p} )p+(Ci{p})- Figure 6 shows the calibrated function C(x; y) ob.taine_d
by standard discriminant analysis. The plane (x; y) is
then simply splitted into three parts, separated by

This criterion is the credal dominance criterion a.Shyperboﬁc boundaries. It is Consequenﬂy possib|e to

defined in [20], in the case where CPDFs are bounded bﬁssign any Object (X, y) to a Speciﬁc class. Zones

pavements. It is optimal when the quantities characteristic of each training class are also circled and

pri(x, | G).ppi(C) are independent. This is actually the gashed on Figure 6.

case when interval CPDFs are estimated by the

nonparametric algorithm, or the quadratic approach of

the parametric algorithm. In the linear approach, it is not.

The credal criterion then overestimates the assignment 4

uncertainty. To improve it, the last remaining solution is

Figure 5: Training sample in the plane (X; y)

assigned intoCil. Otherwise, the algorithm cannot

to use a branch-and-bound algorithm, as defined in 2
Section 2.

0
As a conclusion, the imprecisions on the observations of
the training sample have been propagated in a -2
discriminant analysis algorithm. These imprecisions on
the data points generate uncertainties on the CPDFs and -4
on the posterior probabilities, which cause uncertain G
assignments. -6

2 0 2

5 Case Study Figure 6: Calibrated classifying function in the plane

(xy)
In order to illustrate these theoretic developments of
interval discriminant analysis, we show a very simpleHowever, because of the requirement of precision of this
synthetic case study. In this example, we want tostandard approach, the assignment may appear somewhat
calibrate an interval classifying function between objectsarbitrary, especially in zones of the plane (x; y) near the
defined by two features x and y and three predefineddoundaries between each class. Moreover, in the region
classes. To train the classifier, 100 data per class areamed A, the calibrated function predicts clasg C
available. Figure 5 shows that the three training classesglthough on Figure 1, it appears to be much closer from
are well separated. This usually implies that the twothe training subsets;@nd G.
features are discriminant enough to build a good-quality
classifier. By relaxing this precision requirement, an interval
classifier is calibrated. Table 1 summarises the interval
means and variance-covariance matrices of the different
classes.



G | Zin
1 | [L992.13 [0.0930.130] [-0.118-0.054]
-217:--1.95]9 §-0.118-0.054] [0.310:0.418] [
2 | -0.10,0.04] [0.093,0.130] [-0.067;0.000]
A[1.952.17] O | d-0.067,0.000] [0.387:0.507]
3 | O[-2.1%-197]1 ]0.086:0.123] [0.090,0.158]
~2.10:-1.88] ] §0.090;0.158] [0.378,0.497] 1]

Table 1. Summary of interval means and variance-
covariance matrices for each class

The procedure described in Section 4.1.2 is then applied
in order to estimate the associated interval diagonal X" i
and rotation gmatrices (Table 2).

Table 4 reports the resulting interval posterior
probabilities, computed with the generalised Bayes rule.
As it could be expected, both IE and IE2 generate non-
informative posterior probabilities [0;1] for all the
classes. IE3 outcomes more precise results, aﬁlp@

is null. As a result, IE and IE3 cannot assign the object
among the three classes, whereas IE3 only produces the
outcome {G, C;}. Note that for this object, the results
are the same with both dominance criteria.

C IE IE2 IE3

1 [0;1] [0;1] [0.01;0.99]
2 [0;1] [0;1] [0.01;0.99]
3 [0:1] [0:1] [0:0]

Table 4: Comparison of three interval estimations of
pfCi | x*;,

After illustrating the propagation of imprecision on the

C [Re > assignment of a particular object, it is worth examining
1 955 —0.294 0.031; 0,146] 0 the general results of algorithm IE3, which appear much
EP’ ' B DR _ more efficient than the two others. Figure 7 maps the
0,294 0955 | 0 [0.216,;0.536] 0 possible assigned classes in the attribute space (x;y) . For
2 EP,995 -0,099 90.082;0.139] 0 example, the white zone correspond to objects which
[0,099 0,995 | [ 0 [0.363;0.517] could not be assigned among the three classes.
3 0,949 0,314 90.012;0.123] 0 af 2 N
0,314 0,949 | O 0 [0.231;0.645| ) |
Table 2: Rotation matrices and interval eigenvalues for L ]
each class o e 12
In order to improve the estimation of the interval CPDFs, 2 \\\\ 1
each initial mean pavement was parted into 20 \\\ J
subdomains. -4 \\ -
To check the efficiency of this subpaving approach, we -6 v2/3 _

show the step-by-step computations involved in the

assignment of an objeat*;,/=([0.93,1.07];[-0.11,0.11]).
Table 3 illustrates the sharpening of the interval CPDFﬁ)Iane (x; y)
obtained by using these procedures. For each class, it ’

compares the quantitieg;fx*,,| G), obtained with the

direct interval natural extension IE (Equation 12), with
14 (IE2),
approximation by subpaving the initial interval mean
pavements into 20 subdomains (IE3).

Equation

and after refining the

IE2

Figure 7: Calibrated imprecise classifying function in the

We notice that regions where the assignment is uncertain
correspond to the boundary regions between the 3 classes
shown on Figure 6. This statement is a clear evidence
that in these zones, the assignment between two or more

In Table 3, theasses is not evident. Furthermore, in region A, the

results provided by the first two algorithms (IE and IE2) jnterya) classifier is not able to assign between any class.

are not relevant to our problem, because the width of th%sually

this situation appears for objects which are very

output intervals is very large, and the three intervalgitarent from the training population. In this case, very

CPDFs intervals overlap. However, IE2 provides tighter,
enclosures of the CPDFs. At least,

tremendously the accuracy of the estimation.

G |IE IE2 IE3

1 | [0;+o0] [2.10%1.10] |[1.10":6.10%

2 |[8.10°:3.10% [[9.10™:8.107 |[[3.10°3.107

3 | [0;+o[ [1.10%%3.101 [[1.10™,3.107

IE3 improves

ow CPDFs are computed, associated with a non-
negligible level of uncertainty.

As a conclusion, the imprecise classifying model built in

this synthetic case study appears to be much more
realistic than the standard one. The use of intervals also
prevents us from predicting arbitrary precise class for
objects which cannot be discriminated between the

Table 3: Comparison of three interval estimations ofpredefined classes.
pri{x*, | G}



6 Conclusion

In many real-life issues, classifying is a strong need to
make the measured features more valuable. So far,
discriminant analysis was proved to be an efficient tool
to achieve this purpose. Yet, this statistical method fails
to assess the imprecision on the interpreted model due to
the measurement errors.

This paper has shown a direct application of interval
analysis to solve this problem. More specifically, it gives
a quantitative assessment of the stability of predicted
class, given by the standard algorithm. It also requires
less prior knowledge on the studied objects: for example,
it does not require any knowledge on the exact
distribution of measurement errors, as the Monte-Carlo
methods do. Moreover, the solution given by interval
analysis is aways reliable, because of the inclusion
property. As a consequence, it provides a much more
realistic interpretative model of the studied objects.
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