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Abstract

Rules having rare exceptions are best interpreted as
assertions of high conditional probability. In other
words, a rule If X then Y is interpreted as meaning
that Pr(Y|X) a~ 1. In this paper, such rules are re-
garded as statements about imprecise probabilities,
and imprecise probabilities are identified with con-
vex sets of precise probabilities. A general approach
to reasoning with such rules, based on second-order
probability, is advocated. Within this general ap-
proach, different reasoning methods are needed, with
the selection of a specific method being dependent
upon what knowledge is available about the relative
tightness of the approximation Pr(Y|X) ~ 1 across
rules. A method of reasoning, entailment with uni-
versal near surety, is formulated for the case when
no knowledge is available concerning these relative
tightnesses. Finally, it is shown that reasoning via
entailment with universal near surety is equivalent to
carrying out a particular test on a directed graph.

Keywords. Conditional probability, second-order
probability, Bayesian inference, nonmonotonic logic,
rule-based systems, threshold knowledge, informant,
robustness, directed graph.

1 Second-Order-Probability Logic

Broadly speaking, this paper deals with the problem
of estimating underconstrained conditional probabil-
ities. By this, we mean the problem of estimating
a desired conditional probability when (a) we are
given information consisting of either exact values,
approximations, or bounds for certain other condi-
tional probabilities and (b) the given information fails
to constrain the desired conditional probability to a
unique value. This problem may be regarded as a
problem in imprecise probability for the reason that
the given information is consistent with more than
one probability measure. Other investigators, e.g.,
[4, 6, 26, 27, 37], have attacked this problem using
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a variety of approaches. We have chosen to take a
Bayesian approach in which we adopt a prior dis-
tribution over the space of probability measures and
then base our conclusions on the posterior distribution
resulting from conditioning on the given information
[8,9, 10, 12, 23, 24, 25]. Typically this involves finding
the posterior expectation of the desired conditional
probability. Because the prior and posterior distribu-
tions specify probabilities of probabilities, we call our
general approach Second-Order-Probability Logic.

Motivated by concern over how reasoning should be
done within rule-based systems, this paper deals with
the special problem of ascertaining whether a desired
conditional probability is close to one given that cer-
tain other conditional probabilities are close to one.
To handle this special problem, we superimpose a
certain limiting operation on our basic second-order
Bayesian approach.

2 Rule-Based Systems

A rule-based system consists of the following: (a) a
rule base, (b) a fact base, and (c¢) an inference engine.

Rule base. The rule base consists of a finite set T’
of, say, m rules, denoted A; = B;,i =1,...,m, and
expressed in English as If A; then B;.

The rules typically have occasional exceptions. But,
presumably no one would assert the rule If A; then B;
unless it were the case that, whenever A; is true, it
is highly likely that B; is true. Hence, any rule If A;
then B; will be interpreted here as an assertion that
the conditional probability Pr(B;|A;) is close to one.!

Fact base. The fact base consists of a collection
of facts that describe the current case or situation.
In a meteorological rule-based system, for example,

n addition to If A; then B;, there are many ways of ex-
pressing in English, at least approximately, the concept that
Pr(B;|A;) ~ 1. Some other ways are B; is highly probable
given A; and Nearly all A;s are Bjs.



the fact base contains facts that describe the current
weather. Unlike the rule base which remains constant,
the fact base is always changing with the situation.

Inference engine. The inference engine is an algorithm
that is designed to answer queries put to the rule-
based system. Thus, the user of the system may want
to know whether the potential fact D holds true for
the current case or situation and, so, the user presents
the inference engine with the query Is D true?. The
inference engine responds to the query with an answer
that is either affirmative, negative, or noncommittal.

General Principle of Query Answering. How should
the inference engine answer such queries? Suppose
that the fact base contains the k facts Ci,...,Ck.
Let C denote the conjunction of these facts. Sup-
pose, further, that the query Is D true? has been
presented to the inference engine. This query should
be answered affirmatively if and only if it is believed
that Pr(D|C) ~ 1.2 In other words, in the context of
the facts C, the query Is D true? is really equivalent
to asking Is Pr(D|C) close to one?. Notice that this
latter question is a question about probability and,
thus, it must be answered on the basis of our knowl-
edge about probability. That knowledge is contained
in the rule base, which tells us that certain conditional
probabilities are close to one. Hence, the inference en-
gine should give an affirmative answer to the query Is
D true? if and only if, based on the rule base I, there
is reason to believe that Pr(D|C) = 1, i.e., that the
rule C = D is true.

The General Principle of Query Answering is impre-
cise in that it does not specify what criteria should
be employed for judging whether there is reason to
believe that C' = D holds. It turns out that there are
various criteria, to be discussed below, that we might
justifiably adopt for that purpose.

2.1 Role of Imprecise Probabilities

Anyone who has been informed of the rule 4; = B;
but who has not been informed of the exact value of
Pr(B;|A;) has probabilistic knowledge that is inher-
ently imprecise. Thus, this paper is concerned with
the problem of reasoning about imprecise probabili-
ties. However, much of this paper will be about pre-
cise probabilities because we identify imprecise prob-
abilities with sets of precise probabilities.

21deally, we would like to have Pr(D|C) = 1. However, given
that the rules in the rule base can be in error on rare occasions,
the most we reasonably hope for is that our conclusions based
on those rules will only rarely be in error. Thus, we must be
satisfied with Pr(D|C) ~ 1.

3 Preliminaries

Let £ be a propositional language constructed from
the primitive propositions S, ..., .S, and the connec-
tives A (and), V (or), = (not), and — (material condi-
tional). Let L be an abbreviation for some arbitrarily
chosen contradiction, such as Sy A —=S;. If A,B € L,
let A = B mean that A entails B in propositional
logic and let A £ B mean that A does not entail B.
An atom is a proposition of the form Ty A --- AT,
where each T; is either S; or —.5;.

Definition 1 For any propositions A,B € L, A= B
is an assertion of high conditional-probability (abbre-
viated HCP assertion).

An HCP assertion A = B is a syntactic object that is
to be interpreted as expressing that Pr(B|A) is close
to one. Thus, HCP assertions are not to be inter-
preted as propositions, but as rules.

Definition 2 If Pr is any probability function on L
and if X andY are propositions in L, define

Pr(Y]X) = (1)
sup{p € [0,1] : Pr(X AY) =pPr(X).}

The above supremum-based definition of Pr(Y|X)
agrees with the usual definition when Pr(X) > 0
but, when Pr(X) = 0, it has the effect of setting
Pr(Y]X) = 1 rather than leaving it undefined.

There are two powerful motivations for using this
supremum concept of conditional probability. First,
it creates an analogy between reasoning with HCP
assertions and reasoning in classical logic. In the lat-
ter, there is no inconsistency in asserting both All
unicorns are white and All unicorns are not white
because both statements are true if unicorns do not
exist. Analogously, there is no inconsistency in as-
serting that both Nearly all unicorns are white, i.e.,
Pr(whitelunicorn) ~ 1, and Nearly all unicorns
are not white, i.e., Pr(—whitelunicorn) ~ 1, be-
cause, under Definition 2, both statements are true
if Pr(unicorn) = 0.

Second, using the supremum concept of conditional
probability increases the expressiveness of the lan-
guage of HCP assertions. Thus, it is possible to con-
struct an HCP assertion that may be interpreted as
meaning that Pr(B|A) is ezactly one, rather then
merely close to one. As recognized by Adams [3,
Corollary M3.4] who employed the supremum con-
cept of conditional probability in [3], the HCP as-
sertion A A =B = | may be interpreted as meaning
that Pr(B|A) is ezactly one. To see this, recall that
A AN -B = 1 means that Pr(L|A A =B) is close to



one. But, under Definition 2, Pr(L|A A =B) has the
value one, if Pr(A A =B) = 0, and has the value zero
otherwise. Thus, Pr(_L|A A —B) is close to one if and
only if Pr(A A =B) = 0. But, under Definition 2,
Pr(AA-B) =0 if and only if Pr(B|A) = 1.

Critics of the supremum concept of conditional prob-
ability may be mollified by the fact that all of the
mathematics presented in this paper can be developed
without making any reference to conditional proba-
bility whatsoever. Specifically, under Definition 2, for
any € > 0, the following statements are equivalent:

Pr(Y|X)
Pr(X AY) >

> 1l—e (2)
(1 —¢)Pr(X). (3)

So, whenever an expression of the form (2) appears in
Definitions 3 and 9 below, one may substitute an ex-
pression of the form (3). Thus, in this paper, the use
of conditional probability in general and the supre-
mum concept in particular is not a necessity. How-
ever, use of the supremum concept is a considerable
convenience as it simplifies the formulation of mathe-
matical statements that would otherwise be awkward.

Models. The intuitive idea of model in logic is that
it is a fully specified state of affairs. Such a fully
specified state of affairs is a model of a statement if
the statement is true in that state of affairs. In a logic
whose subject matter is probability, a state of affairs
has been fully specified when the probability of every
proposition has been specified. This motivates the
following definition.

Definition 3 Any probability function on L is said
to be a model. The set of all these models is de-
noted MD. For any € > 0, the models of ' = {4; =
By, ..., Am = Bp} under closeness parameter € are:

md(I') = (4)
{meMD :7(B;|]4;)) >1—¢€i=1,...,m}.

Similarly, the models of C' = D under closeness pa-
rameter ¢ are:

md.(C = D) ={r € MD : n(D|C) > 1 - (}.

3.1 Consistency

Definition 4 T is consistent if and only if md.(T') is
not empty for every € > 0. Let MD™ denote

{meMD:7(X) >0 for all X € £ unless X = 1}.

Then T is Z-consistent if and only if md (T") N MD™
is not empty for every e > 0.

The reason for the choice of term Z-consistent is that
it turns out that Z-consistency is equivalent to the

notion of consistency used in Pearl’s System Z [32].
Necessary and sufficient conditions for both consis-
tency and Z-consistency will be presented later in
Theorem 1.

4 Entailment with Surety: Adams’
Logic of Conditionals

Recall the General Principle of Query Answering
enunciated earlier. If the fact base contains facts
whose conjunction is C' and if the rule base contains
the set of rules I', then the query Is D true? should
be answered affirmatively if and only if T' gives us
reason to believe the HCP assertion C' = D. It was
mentioned that this reason to believe could take differ-
ent forms depending on what criterion for belief was
adopted.

Let us now consider one criterion for believing C = D
given the rules I'. This is the criterion adopted by
Ernest Adams [1, 2, 3, 4] in his logics of conditionals
and of high probability. Put loosely, Adams’ crite-
rion is that, given I' = {4} = By,..., A, = Bn}
we should believe C = D if and only if the condi-
tional probabilities Pr(Bi|A1), ..., Pr(Bm|Am) all be-
ing close to one guarantees that the conditional prob-
ability Pr(D|C) will be close to one. Whenever this
criterion is satisfied, we may say that I' entails C = D
with surety.> A formal statement of this criterion is
given in the following definition.

Definition 5 The set of HCP assertions ' entails
with surety the HCP assertion C = D if and only
if, for every ¢ > 0, there exists an € > 0 such that

md,(I') € md.(C = D). (5)

Entailment with surety is monotonic, meaning that,
if T entails C' = D with surety and if ' C I'*, then
' also entails C' = D.

It is no easy matter to directly apply Definition 5 in
order to ascertain whether I' entails C = D with
surety. To overcome this difficulty, Adams did two
things. First, he constructed a set of rules of inference
[1, Definition 6] having the property that, when using
those rules of inference to derive conclusions from T,
C = D is a derivable conclusion if and only if I" entails
C = D with surety. Second, he constructed a decision
procedure for testing whether or not I' entails C = D
with surety [3, Meta-metatheorem 3]. (For a decision
procedure with markedly improved efficiency, see [7].)

3This is not Adams’ terminology. Adams used the term
probabilistic entailment (abbreviated p-entailment) for what is
called here entailment with surety.



Entailment with surety is equivalent or nearly so to
reasoning in a number of other systems: a set of infer-
ence rules known as System P [28], a more concise set
of inference rules [9, Definition 2.10], the Boolean al-
gebra known as Product-Space Conditional-Event Al-
gebra [24], coherent probability appraisals [20], condi-
tional objects [14], universal possibilistic consequence
[14], big-stepped probabilities [15] based on [36], and
e-belief functions [16]. In addition, Schurz [35] has
shown that a corrected version of the propositional
part of Delgrande’s conditional logic [19] is equivalent
to an extended form of Adams’ logic [3].

4.1 Suitability for Rule-Based Systems

It appears that the reasoning criterion embodied in
Definition 5 is more strict than we would typically
want to use in rule-based systems. Thus, typical rule-
based systems allow chaining of inferences. For exam-
ple, if the fact A and the rule A = B are known, the
fact B may be inferred. Then, if the rule B = C' is
also known, the fact C' may also be inferred.

Recall, from the General Principle of Query Answer-
ing, that inferring C' under the above circumstances
is justifiable only if the rules A = B and B = C give
reason to believe the rule A = C. But, in Adams’
logic, the rules A = B and B = C do not entail with
surety the rule A = C. The reason for this is that the
conditional probabilities Pr(B|A) and Pr(C|B) both
being close to one does not guarantee that Pr(C|A)
will be close to one. In fact, it is easy to construct ex-
amples in which Pr(B|A) and Pr(C|B) can be made
arbitrarily close to one and yet Pr(C|A) is zero.

The above discussion may be summarized:

Example 1 {A = B,B = C} does not entail A =
C with surety.

The above example shows that, if we were to apply
Adams’ logic in a rule-based system, we would, in ef-
fect, be outlawing a method (inference chaining) that
(a) is commonly employed in rule-based systems and
(b) seems intuitively correct.

Is our intuition that Pr(C|A) should be close to one
when Pr(BJA) and Pr(C|B) are both close to one
fundamentally wrong? No, it’s not. It is true that
there do exist probability functions having the prop-
erty that Pr(C|A)is far from one even though Pr(B|A)
and Pr(C|B) are both close to one. However, to an-
ticipate Example 5 below, such probability functions
are rare. Thus, if we judge Pr(C|A) to be close to
one whenever Pr(B|A) and Pr(C|B) are both close to
one, we will nearly always be correct.

The reason that Adams’ logic and typical rule-based

systems have different attitudes about the legitimacy
of inference chaining is that they use different stan-
dards of evidence for reaching conclusions. Whereas
Adams’ logic is explicitly designed to require a high
standard of evidence, typical rule-based systems are
implicitly designed to require a not-so-high standard.

5 Entailment with Near Surety

5.1 Rationale

Note that, in Adams’ logic, in order to infer C' = D
from I', Eq. 5 of Definition 5 requires that every model
of T' (under closeness parameter €) be a model of
C = D (under closeness parameter ¢). In the au-
thors’ view, this is too high a standard of evidence for
use in rule-based systems. Instead, rule-based sys-
tems should generally be based on a logic in which a
conclusion is inferred from premises whenever nearly
every model of the premises is a model of the conclu-
sion. Thus, C = D should be inferred from I" when-
ever nearly every model of I" is a model of C = D.
With such a logic, conclusions would be highly likely
to be true rather than certain to be true. But, as a
payoff for adopting this more lax criterion for infer-
ence, the system would infer more conclusions than it
otherwise could. (For some logics that have used this
general approach to lowering the standard of evidence
needed to reach conclusions, see [6, 29].)

The first author has designed a logic, the Near-Surety
Logic of HCP Assertions [9], in which, in order for a
conclusion to be inferred from premises, nearly every
model of the premises must be a model of the con-
clusion. In order to rigorously define what was meant
by nearly every model, a probability measure over the
space of models MD was employed. So, because the
models themselves are probability functions, the prob-
ability measure over models is second-order.

5.2 Definitions

Definition 6 If the number of primitive propositions
in the propositional language L is r, then the number
of atoms in the language is 2", which we will denote by
n. Let these atoms be denoted atq,...,at,. For any
vector § = (01,...,0,) € R™ whose coordinates are all
non-negative and sum to one, let wy denote the unique
probability function on L such that me(at;) = 6; for
j=1,...,n. Thus, 0 is a parameter that indezes the
probability functions on L.

This a standard beginning for doing Bayesian statis-
tical analyses [31, Introduction]. After indexing a set
of probability functions with a parameter vector, one
adopts a prior distribution for the parameter vector.



In our case, we will adopt, for our prior, the uniform
distribution over the simplex of #-vectors.* It is only
convenient and not essential that the prior be uniform.
Substitution of any of a wide range of non-uniform pri-
ors would not affect the logic that will be developed
below [9, Section 3.1.1].

Since there is a one-to-one correspondence between
the set MD of all probability functions on £ and the
simplex of f-vectors in R, it will be convenient to
identify each probability function 7 with its param-
eter vector and to use the same symbol 7 for both.
Thus, a set of probability functions may be regarded
here as a set of vectors. In particular, this identifica-
tion makes the set of models md,(T") into a compact
convex polytope in R™ [9, Proposition 2.14]. Con-
versely, the uniform prior distribution over #-vectors
may be regarded as a second-order distribution over
a collection of first-order probability functions on L.

Definition 7 Assuming that T' is consistent, let
Tma () denote a probability measure on the Borel-
measurable subsets of MD that has support on the
polytope md (T") and that is uniformly distributed on
md(T).

In essence, given the uniform second-order prior dis-
tribution on MD, T,,,4_(r) is the posterior distribution
on MD conditioned on the occurrence of the event
md ().

Let IIq () denote a random probability function
having second-order probability distribution T4 (r)-
In other words, Il,q ) is a probability function
selected at random from among all those that are
models of I' under closeness parameter e. Then,
T nd. (ry[mde (C = D)] is the second-order probability
that g (r)(D|C) is at least 1 — (.

Definition 8 T' entails with near surety C = D if
either (a) I' is consistent and

(v¢ > 0) [ (1im Y oy [mde (C = D)) =1], (6)
or (b) T is inconsistent.

In the above definition, the reason for defining I' to
entail C' = D with near surety whenever I" is incon-
sistent is the following. If I' is inconsistent, then, for
small €, there exist no models of I" and, therefore,
every model of T' is a model of C' = D. A neces-
sary and sufficient condition for entailment with near
surety will be presented later in Theorem 2.

Equation 6 of the above definition is equivalent to
stating that the random variable II,q () (D|C) con-

4Distributions over this simplex are also employed in the
statistical study of proportion vectors [5].

verges in probability to one as € goes to zero. In other
words, (6) states that, as € goes to zero, it becomes
more and more certain that nearly all models 7w of
I" under closeness parameter € have the property that
m(D|C) > 1—(, no matter how small ¢ > 0 is taken to
be. However, (6) does not require that this certainty
ever become absolute.

Example 2 For premises, take I' = {A = B}. As
a potential conclusion take the contrapositive =B =
- A. We want to know whether the premise entails the
conclusion with near surety. It can be shown that

Tmd, (A= B)[mde (=B = =A)] = ¢/[C + (1 = ()e]. (7)

Note that, for every ¢ > 0 no matter how small, the
right side of (7) approaches one as € goes to zero. In
other words, for sufficiently small € > 0, nearly every
model 7 having the property that (i) m(BJA) > 1—¢
also has the property that (i) n(=A|-B) > 1 — (.
However, (7) also shows that, no matter how small
€ > 0 is, it never becomes certain that a model having
property (i) will also have property (ii). This shows
that A = B entails =B = —A with near surety, but
not with surety. (For further discussion of this exam-
ple, including its vector geometry, see [9, Section 2.6].)

Second-order expectation. Letting E denote second-
order expectation, Equation 6 of Definition 8 is equiv-
alent to:

lim B[, ) (DIO)] = 1.

This shows that testing for entailment with near
surety is an example of the kind of posterior expecta-
tion problem mentioned in Section 1 that is the sub-
ject of the authors’ line of research [8, 9, 10, 12, 23,
24, 25).

Entailment with near surety is equivalent or nearly so
to reasoning in a number of other systems: rational-
closure [30], System-Z [32], least specific possibilistic
consequence [14], and least-commitment consequence
based on e-belief functions [16].

Unlike entailment with surety, entailment with near
surety is not monotonic. For further probabilistic
approaches to constructing nonmonotonic logics, see
[21, 17, 33, 34, 6] plus further references in [9)].

6 The Importance of Thresholds

6.1 Equal Thresholds

The general intent of the definition of entailment with
near surety (Definition 8) is that, given the HCP as-
sertions I', there is reason to believe the HCP asser-
tion C' = D if nearly every model of T" is also a model
of C = D.



Which models are to be considered models of I'? In
Definition 8, a probability function 7 is considered to
be a model of T if and only if each 7 (B;|A;) reaches
or exceeds a threshold and the same threshold 1 — ¢
is used for each 7(B;|A;).

The single-informant analogy. Under what circum-
stances, would it make sense for an agent to use the
same threshold for every premise 4; = B;? It cer-
tainly would make sense if the set I' of HCP assertions
had been obtained from an informant in the follow-
ing manner. The informant has either full or partial
knowledge of the “true” model mye.? In addition, the
informant has some threshold for classifying a condi-
tional probability as close to one. Thus, the informant
will classify the conditional probability miue(Y]X) to
be close to one if Tyre(Y|X) exceeds his/her thresh-
old. If the informant knows that mue(Y]X) does ex-
ceed the threshold, then the informant may report to
the agent that X = Y is a true HCP assertion, but
will not do so otherwise.

Suppose that the agent and the informant are no
longer in communication and the agent wants to know
whether C' = D is a correct HCP assertion in the
sense that mye(D|C) is is close to one. (Assume that
the agent has his/her own threshold for judging close-
ness to one and isn’t concerned with whether that
threshold is the same as the informant’s threshold.)

The agent’s only knowledge about the “true” model
Tirue 18 that, as judged by his/her informant,
Terue(Bi|Ai), 0 = 1,...,m, are all greater than some
threshold that we may denote by 1 — e¢. Hence, the
agent knows that 7, is a member of the set md.(T").
The only information that the agent has about the
value of € is that € is small. So, the agent tries out
various values of €. If, for all really small values of e,
nearly all models 7 € md,(I") have the property that
m(D|C) exceeds the agent’s personal threshold 1 — ¢
for judging closeness to one, then the agent concludes
that he/she has good reason to believe C' = D.

In essence, the definition of entailment with near
surety (Definition 8) embodies an idealized version of
the just-described strategy of the agent.

Note that the above strategy is susceptible to er-
ror. It’s possible that mue(D|C) is far from one
even though 7(D|C) is close to one for nearly all
m € md¢(I"). However, the likelihood of error is small.

Precise vs. imprecise probability. In the above, the
agent’s probabilistic knowledge is inherently impre-
cise. As is frequently done in the study of imprecise

5For our purposes, it doesn’t matter whether mirye is an
aleatory probability or whether it represents the belief of a third
party, such as an expert whom the informant has interviewed.

probabilities [18, 37], this paper represents the agent’s
inherently imprecise probability knowledge by a con-
vex set of precise probability functions, specifically
the parametrized set md(T).

6.2 Unequal Thresholds

Real-life sources of HCP assertions. In real life, we
are likely to obtain HCP assertions from a variety of
sources: personal experience, experiences of acquain-
tances, newspaper stories, opinions of experts, and
statistical studies. It seems unlikely that the sources
would all employ the same threshold for judging close-
ness to one.

The fact that the different sources may employ dif-
ferent thresholds is a point that should be taken into
account when attempting to deduce new HCP asser-
tions from old ones. This was shown in the study of
scaled HCP assertions.

Scaled HCP assertions. Without going into the full
and mathematically precise details [9, Section 3], suf-
fice it to say that a scaled HCP assertion has the form
X =F Y, where k is a positive integer or oo, and
may be loosely interpreted as meaning that Pr(Y|X)
is at least as large as closeness-to-one threshold of
1—O(e*). Entailment with near surety of scaled HCP
assertions was defined in a manner analogous to en-
tailment with near surety for ordinary unscaled HCP
assertions. It was shown [9, Section 4.3] that, given
Z-consistent premises, entailment with near surety
was equivalent to deduction within Goldszmidt and
Pearl’s System-Z* [22].

It turns out that with scaled HCP assertions, the val-
ues of the closeness-to-one thresholds affect what con-
clusions are entailed. An example will illustrate this.

Example 3 Suppose that A, B, and C as well as P
and @ are all propositions such that (i) C = B = A,
(i) AW B CH L, (iid) Q = P, (iv) PH QL.
and (v) AAP = L. Note that, from these properties,
it follows that C' and @ contradict each other, i.e.,
CAQ = L. Let:

0, =
0, =

{A="-B,B=7-C}.
{P=F-Q}.
In the following, let =, denote entailment with near

surety. Then, using Theorem 3.15 of [9], it can be
shown:

(CvQ)="" Q.
(CvQ)=*cC.

61 ’:ns
@2 ':ns

Thus, ©; and ©s oppose each other as regards
whether @) or C' should be expected when C' V @ is



true. What happens when ©; and ©: both hold?
The answer depends on the relative sizes of h + j and
k. Thus, when h+ j > k,

O1U0; = (CV Q) =2M7F Q. (8)
But, when h + j < k,

OLUB, = (CV Q) =Fh=7 . (9)

Thus, the relative sizes of the deviations from unity
of the three thresholds 1 — O(e"), 1 — O(e?), and 1 —
O(e¥) determines which of the conclusions (8) or (9),
if either, that we should reach. So, if we didn’t know
the values of h, 7, and k, then we aren’t justified in
reaching either of the conclusions (8) or (9).

6.3 Impact of Assuming Equal Thresholds

Assuming that thresholds are equal when they aren’t
can lead to errors of reasoning.

Example 4 Consider Example 3 again, but with or-
dinary (unscaled) HCP assertions replacing the scaled
HCP assertions. It can be shown that

{A=-B,B=-C,P=-Q} (10)
EFns (CVQ)=Q.

This result is based on the assumption that the in-
formants who supplied the HCP assertions on the left
side of (10) all employed the same threshold 1 — .
But, we know from Example 3 that, if that assump-
tion is not correct, then the conclusion on the right
side of (10) is not justified. This shows that entail-
ment with near surety can yield inappropriate conclu-
sions when we don’t possess the threshold knowledge
implicitly assumed in the definition of entailment with
near surety (Definition 8).

7 Entailment with Universal Near
Surety

Proofs of the results in this section will appear in [11].

7.1 Reasoning when Threshold Knowledge
is Minimal

The no-informant-in-common analogy. Suppose that
the agent has obtained the HCP assertions in I' from
different informants with no two HCP assertions being
supplied by a common informant. Suppose, further-
more, that the agent has no idea how the different
informants’ thresholds compare with each other. In
other words, each HCP assertion A; = B; € T has

been obtained from an informant having a closeness-
to-one threshold of 1 — ¢; and, although the agent
knows that all the ¢;s are small, he/she has no idea of
their relative sizes.

How should the agent deduce new HCP assertions
when he/she has minimal threshold knowledge as de-
scribed above? The following definition of entailment
with universal near surety was designed as an answer
to that question. Because the agent has no idea of
the relative sizes of the ¢;s, the limit operation in the
following definition allows each €; to approach zero at
its own rate which may be faster or slower than the
other ¢;s.

7.2 Definition

Definition 9 Define the models of I' under closeness
parameters €1, ..., €y, > 0 to be:

{TFEMDITF(B”AOE:[—Q, ZZL,TTZ}

If this set of models is not empty, let Tia, . (1)
denote a probability measure on the Borel-measurable
subsets of MD that has support on and is uniformly
distributed over md,, ... (I'). ThenT entails C = D
with universal near surety if either (a)I' is consistent
and, for all { >0,

lim  Tpa, . omd(C=D)=1, (11)

€1,..,€m —

or (b) T is inconsistent.

Equation 11 may be paraphrased as follows. De-
fine a threshold function wvector to be an m-tuple
(e1,...,em) of positive valued functions defined on
(0,1) and such that each e;(¢) — 0 as ¢ — 0. Then,
Eq. 11 is equivalent to stating that, for every choice
of threshold function vector (ey, ..., emn),

em () (T) [de(C = D)= 1.

i Yong,, ...,
This last equation explains the meaning of the word
universal in the phrase entailment with universal near
surety. The convergence to one is universal across all
threshold function vectors.

Consequently, if C' = D is entailed with near univer-
sal surety by I', then the agent will be nearly sure
that e (D]C) is close to one, no matter what the
relative sizes of the deviations €, ..., €, from unity
of the informants’ thresholds.

Entailment with universal near surety is robust in the
following sense. When the agent has more thresh-
old knowledge than the minimal knowledge implicitly
assumed in the above definition, the agent may be



justified in reaching additional conclusions that are
not entailed with universal near surety. However,
his/her additional threshold knowledge will never
cause him /her to reject any conclusion that is entailed
with universal near surety. In particular, any conclu-
sion that is entailed with universal near surety will
also be entailed with near surety. It will be seen how-
ever, in Example 6 below, that the converse does not
hold.

Like entailment with near surety, entailment with uni-
versal near surety is nonmonotonic.

7.3 Some Useful Definitions

Definition 10 If ¢ denotes the HCP assertion X =
Y, let £~ denote the corresponding material con-
ditional X — Y.5 If 2 is a set of HCP asser-
tions, let 2 denote the set of material conditionals

{7 : 6B}

Definition 11 If ¥V C T', let the set of HCP asser-
tions in ¥ having antecedents that V= “excludes” be
denoted EX W. That is:

EXU={4, =B, € V:U" -4}

A subset ¥ of T is self-excluding if EX W = U. Let
a non-increasing sequence of finite sets T'g,T'1,To, ...
be constructed as follows. Let 'y = T'. For k > 0,
let Tyr1 = EXTg. Note that there must exist some
integer K such that Ty = I'x for all k > K. Let
Tee =Tk

In Pearl’s terminology [32], EX ¥ consists of those
members of W that are not “tolerated” by W.

Proposition 1 Ty, is self-excluding and, if ¥ C T is
self-excluding, then ¥ C TI'g,.

Terminology. (From [13].) A directed graph or digraph
consists of an ordered pair (V, A) in which V is a finite
set and A is a subset of {(x,y) : x,y € V and z # y}.
The elements of V' are called vertices and the elements
of A are called arcs. A path froma € V tob e V is
a finite sequence of k > 1 distinct vertices vy,..., vk
such that v1 = a, vy = b, and for j = 1,...,k — 1 the
ordered pair (v;,v;41) is an arc.

Definition 12 Let D(T') denote a directed graph con-
structed from T as follows. The vertices of D(T') con-
sist of all the subsets of T'. The arcs of D(T') consist
of all ordered pairs (V,Z) such that

I'>2UVDO>=DEXVW.

6Recall that, unlike the HCP assertion X = Y, the material
conditional X — Y is an ordinary proposition in £ and is
equivalent to Y V = .X.

Let K denote the smallest value of k such that T'y =
I'se. Then, the sequence I'y,...,I'x is the path of
steepest descent from I' to Tg.

Definition 13 A set of HCP assertions = supports
an HCP assertion X =Y if (a) 27 F# —X and (b)
EoEX Y.

In other words, = supports X = Y if =~ implies
X — Y but does not imply X — =Y.

7.4 Key Results

Theorem 1 below is based on Theorem 3.14 and
Proposition 4.8 of [9]. Theorem 2 is based on Theo-
rem 3.17 of [9]. Theorem 3, which is the main theorem
of this paper, is new.

Theorem 1 (a) The set of HCP assertions T is con-
sistent if and only if the set of propositions '™ is con-
sistent. (b) T is Z-consistent if and only if T'se = 0.

Theorem 2 T entails C = D with near surety if and
only if either (a) the path, in D(I"), of steepest descent
from T to Ty contains a vertex that supports C = D
or (b) Ty« = -C.

Theorem 3 T' entails C = D with universal near
surety if and only if either (a) every path in D(T)
from T to I'ys contains a vertex that supports C = D
or (b) Tse™ E —C.

A current research question is whether there exists
a way of testing for entailment with universal near
surety that is more efficient than examining every
path from I'" to I's.. This question can be answered
affirmatively in the following very special case.

Corollary 1 Suppose that '~ £ —=C. Then I’ entails
C = D with universal near surety if and only if T~ =
C — D.

7.5 Examples

Example 5 Recall from Example 1 that, if I' =
{A = B,B = C}, then T does not entail A = C with
surety. However, assuming that A A B A CE£ L, then
I" supports A = C and, therefore, by Corollary 1, T’
entails A = C with universal near surety.

Example 6 Consider Example 4 once again. Let T’
consist of 1, 72, and <3, which respectively denote
A= -B, B= ~C, and P = Q. Also, let p denote

cvaQ) =aQ.

We know from (10) of Example 4 that I" entails p with
near surety. Now, we want to know whether I" entails
p with universal near surety.



In D(T), the paths from T" to T's, = @ are the following;:

) {'72}7 0.

s et {ne} 0.
) {72573}7 {72}7 0.
) {72a73}7 {73}7 0.

The first of these paths is the path of steepest de-
scent. It contains a vertex, {72}, that supports p.
This shows, as we already knew, that I' entails p
with near surety. Now, notice the last path. None
of the vertices in this path support p and, further-
more, I'se ™ £ —(C'V Q). Therefore, T' does not entail
p with universal near surety.

eReRele!

8 Summary

Motivated by the need in rule-based systems for a
reasoning method less stringent than entailment with
surety, two methods of reasoning with imprecise prob-
abilities, namely, entailment with near surety and en-
tailment with universal near surety have been defined
and characterized.

Acknowledgements

We are indebted to Ernest W. Adams, Moisés Gold-
szmidt, Hung T. Nguyen, and William C. Torrez for
helpful discussions on the topic of this paper.

The mailing address for both authors is:
SPAWARSYSCEN D44215 (PL-BK)
53345 RYNE ROAD ROOM 222

SAN DIEGO CA 92152-7251

USA

References

[1] E. W. Adams. Probability and the logic of condi-
tionals. In J. Hintikka & P. Suppes (eds.), Aspects
of Inductive Logic. Pp. 265-316. North Holland
Publishing, 1966.

[2] E. W. Adams. The Logic of Conditionals. D. Rei-
del, 1975.

[3] E. W. Adams. On the logic of high probabil-
ity. Journal of Philosophical Logic, 15: 255-279,
1986.

[4] E. W. Adams. Four probability-preserving prop-
erties of inferences. Journal of Philosophical
Logic, 25: 1-24, 1996.

[5] J. Aitchison. The Statistical Analysis of Compo-
sitional Data. Chapman and Hall, 1986.

[6]

[10]

[12]

[13]

[14]

F. Bacchus, A. J. Grove, J. Y. Halpern, & D.
Koller. From statistical knowledge bases to de-
grees of belief. Artificial Intelligence, 87: 75143,
1996.

D. Bamber. Probabilistic entailment of condi-
tionals by conditionals. IEEE Transactions on
Systems, Man, and Cybernetics, 24: 1714-1723,
1994.

D. Bamber. How probability theory can help
us design rule-based systems. Proceedings of the
1998 Command €& Control Research & Tech-
nology Symposium, Naval Postgraduate School,
Monterey, CA, June 29 — July 1, 1998. Pp. 441-
451, 1998.

D. Bamber. Entailment with near surety of scaled
assertions of high conditional probability. Jour-
nal of Philosophical Logic, 29: 1-74, 2000.

D. Bamber & I. R. Goodman. New uses of
second order probability techniques in es-
timating critical probabilities in Command
& Control decision-making. Proceedings of
the 2000 Command €& Control Research &
Technology — Symposium. Naval Postgradu-
ate School, Monterey, CA, June 26-28, 2000.
<http://www.dodccrp.org/2000CCRTS/cd /html
/pdf_papers/Track_4/124.pdf>.

D. Bamber & I. R. Goodman. Robust reasoning
with assertions of near-unity conditional proba-
bility when knowledge about near-unity thresh-
olds is minimal. To be submitted for publication.

D. Bamber, I. R. Goodman, & H. T. Nguyen. Ex-
tension of the concept of propositional deduction
from classical logic to probability: An overview
of probability selection approaches. Information
Sciences, 2001, in press.

J. Bang-Jensen & G. Gutin. Digraphs: Theory,
Algorithms and Applications. Springer, 2000.

S. Benferhat, D. Dubois & H. Prade. Nonmono-
tonic reasoning, conditional objects and possibil-
ity theory. Artificial Intelligence, 92: 259-276,
1997.

S. Benferhat, D. Dubois & H. Prade. Possibilis-
tic and standard probabilistic semantics of con-

ditional knowledge bases. Journal of Logic and
Computation, 9: 873-895, 1999.

S. Benferhat, A. Saffiotti & P. Smets. Belief
functions and default reasoning. Artificial Intel-
legence, 122: 1-69, 2000.



[17]

[19]

[20]

[23]

[25]

[26]

R. A. Bourne & S. Parsons. Maximum en-
tropy and variable strength defaults. Proceedings
of the Sixteenth International Joint Conference
on Artificial Intelligence (IJCAI-99). Stockholm,
July 31-August 6, 1999. Vol. 1, pp. 50-55, 1999.

F. Cozman. Introduction to the Theory of Sets of
Probabilities. <http://www.cs.cmu.edu/ gbayes
/Tutorial/>.

J. P. Delgrande. A first-order conditional logic for
prototypical properties. Artificial Intelligence,
33: 105-130, 1987.

A. Gilio. Precise propagation of upper and lower
probability bounds in System P. Annals of Math-
ematics and Artificial Intelligence, in press.

M. Goldszmidt, P. Morris & J. Pearl. A maxi-
mum entropy approach to nonmonotonic reason-
ing. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 15: 220-232, 1993.

M. Goldszmidt & J. Pearl. Qualitative probabil-
ities for default reasoning, belief revision, and
causal modeling. Artificial Intelligence, 84: 57—
112, 1996.

I. R. Goodman. A decision aid for nodes in
Command & Control Systems based on cognitive
probability logic. Proceedings of the 1999 Com-
mand & Control Research & Technology Sym-
posium. U. S. Naval War College, Newport, RI,
June 29-July 1, 1999. Pp. 898-941, 1999.

I. R. Goodman & H. T. Nguyen. Adams’ high
probability deduction and combination of infor-
mation in the context of product probability con-
ditional event algebra. Proceedings of the Inter-
national Conference on Multisource-Multisensor
Information Fusion (FUSION-98). Las Vegas,
NV, July 6-9, 1998. Vol. 1, pp. 1-8, 1998.

I. R. Goodman & H. T. Nguyen. Computational
aspects of quantitative second order probabil-
ity logic and fuzzy if-then rules: Part 1, Basic
representations as integrals. Proceedings of the
Fifth Joint Conference on Information Sciences.
Atlantic City, NJ, February 27-March 3, 2000.
Vol. 1, pp. 64-67, 2000.

T. Hailperin. Sentential Probability Logic: Ori-
gins, Development, Current Status, and Techni-
cal Applications. Associated University Presses,
1996.

E. T. Jaynes. On the rationale of maximum-
entropy methods. Proceedings of the IEEE, 70:
939-952, 1982.

[28]

[30]

[31]

[33]

[34]

S. Kraus, D. Lehmann & M. Magidor. Nonmono-
tonic reasoning, preferential models and cumula-
tive logics. Artificial Intelligence, 44: 167-297,
1990.

H. E. Kyburg, Jr. Combinatorial semantics: Se-
mantics for frequent validity. Computational In-
telligence, 13: 215-257, 1997.

D. Lehmann & M. Magidor. What does a con-
ditional knowledge base entail? Artificial Intelli-
gence, 55: 1-60, 1992.

D. V. Lindley. Bayesian Statistics, A Review. So-
ciety for Industrial and Applied Mathematics,
1971.

J. Pearl. System Z: A natural ordering of defaults
with tractable applications to nonmonotonic rea-
soning. In R. Parikh (ed.), Theoretical Aspects of
Reasoning about Knowledge. Proceedings of the
Third Conference (TARK 1990). Morgan Kauf-
mann, pp. 121-135, 1990.

G. Schurz. Probabilistic justification of default
reasoning. In B. Knebel & L. D. Dreschler-
Fischer (eds.), KI-94: Advances in Artificial In-
telligence. Proceedings of the German Annual
Conference on Artificial Intelligence. Springer,
pp. 248-259, 1994.

G. Schurz. Probabilistic default logic based on ir-
relevance and relevance assumptions. In D. Gab-
bay, et al. (eds.) Qualitative and Quantitative
Practical Reasoning. Lecture Notes in Artificial
Intelligence, Vol. 1244. Springer, pp. 536-553,
1997.

G. Schurz. Probabilistic semantics for Del-
grande’s conditional logic and a counterexample
to his default logic. Artificial Intelligence, 102:
81-95.

P. Snow. Diverse confidence levels in a proba-
bilistic semantics for conditional logics. Artificial
Intelligence, 112, 269-279, 1999.

P. Walley. Statistical Reasoning with Imprecise
Probabilities. Chapman and Hall, 1991.



