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Abstract

In this paper coherent risk measures and other cur-
rently used risk measures, notably Value-at-Risk
(V aR), are studied from the perspective of the the-
ory of coherent imprecise previsions. We introduce
the notion of coherent risk measure defined on an ar-
bitrary set of risks, showing that it can be consid-
ered a special case of coherent upper prevision. We
also prove that our definition generalizes the notion
of coherence for risk measures defined on a linear
space of random numbers, given in literature. We
also show that Value-at-Risk does not necessarily sat-
isfy a weaker notion of coherence called ‘avoiding sure
loss’ (ASL), and discuss both sufficient conditions for
V aR to avoid sure loss and ways of modifying V aR
into a coherent risk measure.

Keywords. Coherent risk measure, imprecise previ-
sion, Value-at-Risk, avoiding sure loss condition.

1 Introduction

The notion of coherent risk measure has been intro-
duced very recently in a series of papers, including
[1, 2, 4], by P. Artzner, F. Delbaen, S. Eber and D.
Heath. A coherent risk measure is defined through a
set of axioms on a linear space of random numbers.
These axioms are quite reasonable when trying to give
a numerical evaluation to risks, but are not all neces-
sarily satisfied by most currently used risk measures,
including Value-at-Risk (V aR).

The theory of coherent risk measures is related to var-
ious other theories. In particular, it is noted in [4] that
the theory of imprecise probabilities ‘is certainly not
disjoint from risk management considerations’.

In this paper we introduce the notion of coherent risk
measure defined on arbitrary sets of risks and show
that this notion is strictly related to the notion of im-
precise prevision. More generally, the paper is also
concerned with other risk measures, notably V aR,

from the perspective of imprecise previsions.

The theory of imprecise previsions has been exten-
sively studied by P. Walley [9]; previous work on
the topic includes [12] and the pioneering paper [7].
The theory generalizes de Finetti’s approach to pre-
cise previsions [3], is extremely general and flexible
and includes also other uncertainty measures as spe-
cial cases, for instance belief functions or 2-monotone
lower probabilities. We show in this paper that it can
also be applied to risk measures.

To be more precise, after introducing in Section 2.1 a
behavioural interpretation of risk measures, we show
that this interpretation leads us to consider them a
special case of upper previsions, whose basic proper-
ties are shortly reported in Section 2.2. This fact lets
us apply to risk measures, in Section 2.3, the well-
known consistency notions of avoiding sure loss (ASL)
and coherence from the theory of imprecise previsions.
In this way, the notion of coherent risk measure is
generalized, being defined for arbitrary (finite or not,
structured or not) sets of risks in Definition 4. It
is shown in Section 2.4 that this definition extends
the definition of coherence for risk measures given in
literature. Besides, using the theory of imprecise pre-
visions, known properties of coherent risk measures
defined on linear spaces can be easily obtained in this
more general setting (we quote the use of ‘scenarios’
to obtain coherent risk measures, see Section 2.5).
We prove in Section 3.1 that V aR, which is known
not to be coherent, does not even necessarily satisfy
the weaker consistency condition of avoiding sure loss.
However, it can be seen in a fairly general case that
V aR tends to avoid sure loss if the V aR evaluation
is ‘sufficiently prudential’: see Section 3.1, especially
Proposition 4, Corollary 1 and Subsection 3.1.1.

If a risk measure avoids sure loss there is a standard
way to correct it into a coherent risk measure, resort-
ing to the notion of natural extension [9] of imprecise
previsions, as discussed in Section 3.2.



2 Coherent risk measures as upper
previsions

2.1 Behavioural interpretation of risk
measures

In this section we present a behavioural interpretation
of risk measures which will lead us to a general defini-
tion of the notion of coherent risk measure in Section
2.3. In addition, we explain some assumptions made
to settle the problem and to ensure comparability with
previous work on the subject.

Risk measures are naturally introduced when consid-
ering the problem of evaluating at time t = 0 how
risky the positions in a set D are, based on the future
(random) value of each position X at a fixed time
T > 0. Technically, every X is a real random num-
ber, which is given the meaning of the value at T of a
certain position. We shall sometimes call X a risk as
done e.g. in [2] (anyway, there is no general agreement
in financial literature on the usage of the term risk).
We assume throughout the paper that every risk in D
is bounded.

Given D, a risk measure ρ is a mapping from D into
IR assigning to each X ∈ D a number, which is a risk
assessment for X. From a behavioural point of view,
a subject willing to evaluate ρ(X) can identify it with
the infimum of the amounts that he/she would ask
(at time t = 0) to shoulder the risk X (at time T ).
Clearly, the more X is risky the higher ρ(X) should
be. Since getting a specific amount for receiving X is
the same as selling−X for the same amount, ρ(X) can
be equivalently viewed as an infimum selling price (at
0) for receiving −X (at T ). Note that in this scheme
there is a gap between time 0 when ρ is assessed and
time T when the value of X is determined. This fact
cannot usually be neglected: cashing an amount to-
day is not financially equivalent to receiving the same
amount at an arbitrary future time T . Therefore, the
future position X at T has to be discounted to de-
termine its present value at 0 and make it financially
homogeneous with ρ(X). We shall assume that

a) there exists a reference instrument in the market
which yields a ‘sure’ amount r > 0 at t = T for
every monetary unit invested (at t = 0).

Generally, such an instrument can be a zero-coupon
bond with maturity at T , while r = 1+ i(T ) and i(T )
is the interest accumulated over the period [0, T ] by
investing one monetary unit at t = 0 (estimating this
interest as a function of T is a standard problem in
the mathematics of finance, see for instance [5]).

We can therefore refer the behavioural interpretation

of ρ(X) to the present value of X (or −X), i.e. to
X/r. This is not necessary when r is sufficiently close
to one or the time gap is not significantly large. These
assumptions are sometimes understood, see e.g. [9]
Section 2.4.8.

Summing up, the risk measure for X can be viewed
as the infimum selling price for −X/r.

This is precisely the behavioural interpretation given
in [9] for the upper prevision P of −X/r. Therefore,
a risk measure appears to be a special case of upper
prevision:

ρ(X) = P (−X/r) (1)

The sign of ρ lets us distinguish between desirable and
non-desirable risks. In fact, ρ(X) < 0 means that the
subject would be disposed to receive a negative sum,
i.e. to pay something, for getting X at T . In other
words, X is desirable to him/her. On the contrary,
ρ(X) > 0 implies that the subject should be actu-
ally paid to undergo the risk X. The case ρ(X) = 0
identifies a marginally desirable risk (i.e. X + ε is
desirable for every ε > 0). Hence, the behavioural
interpretation of ρ implies that:

i) X is desirable if ρ(X) ≤ 0

ii) X is not desirable if ρ(X) > 0.

2.2 Consistency of imprecise previsions

Relation (1) highlights the strict correspondence be-
tween the behavioural interpretation of risk measures
and upper previsions. It appears therefore natural to
apply to risk measures the same consistency notions
developed for upper previsions in the theory of coher-
ent imprecise previsions, as well as the main results of
this theory. The basic notions which will be needed
later on are shortly recalled in this section. Proofs of
the results reported here and more detailed informa-
tion may be found in [9] (see also [10] for a shorter
introduction to the topic). A first coherence condition
is given by the following definition [9].

Definition 1 Given a set D of (bounded) random
numbers, a mapping P from D into IR is an upper
prevision on D that avoids sure loss iff, for all n ∈ N,
for each X1, . . . , Xn ∈ D, for each s1, . . . , sn ≥ 0, it
is

sup
n∑

i=1

si(P (Xi)−Xi) ≥ 0

The condition of avoiding sure loss (ASL) appears to
be too weak in many respects. For instance, it may
be compatible with the inequality P (X) > sup X or it



may violate monotonicity. Therefore, it is usual to re-
quire for a prevision P to satisfy a stronger condition
of coherence [9].

Definition 2 Given an arbitrary set D of (bounded)
random numbers, a mapping P from D into IR is a
coherent upper prevision for the random numbers in
D iff, for all n ∈ N, for each X0, X1, . . . , Xn ∈ D,
for each s0, s1, . . . , sn real and non-negative, defining
G =

∑n
i=1 si(P (Xi) − Xi) − s0(P (X0) − X0), it is

sup G ≥ 0.

This definition generalizes to imprecise previsions the
coherence principle introduced by de Finetti [3] for
(precise) previsions 1 and probabilities. It also in-
cludes the definition of coherent upper probability,
which is obtained when each X ∈ D is the indica-
tor function |E| of some event E (|E| is the random
number which is equal to 1 if E is true, to 0 if E is
false).

The theory of coherent imprecise previsions is very
general, as shown by its following basic features:

i) A coherent precise or imprecise prevision for a
random number X does not require any prior as-
signment of a (precise or imprecise) probability
distribution on X, and in this sense a prevision
is a more flexible tool than an expectation, since
it fits well with situations where first-order mo-
ment evaluations only are available. However,
whenever an expectation is defined, it is a co-
herent prevision, so the two concepts have the
same meaning, in the precise case, of summariz-
ing X. Imprecision in evaluation - whatever are
its sources - brings to consider an upper and a
lower prevision. Anyway, it is sufficient to re-
fer to either upper (P ) or lower (P ) previsions,
assuming that

P (X) = −P (−X) (2)

holds.

We shall mainly employ upper previsions, since
this choice is more natural to interpret coherent
risk measures as imprecise previsions.

ii) Coherent upper previsions are defined on quite
arbitrary (non-empty) sets of random numbers,
and can therefore be applied in very general (and
common) situations. Clearly, the results we men-
tion for imprecise previsions (like Theorem 2 be-
low) also hold in the same general setting.

1The definition of coherent precise prevision may be ob-
tained from Definition 2 by simply dropping the non-negativity
restriction for s0, s1, . . . , sn.

iii) Given a coherent upper prevision P on a set
D, there always exists a coherent extension P

′

(which is generally not unique) on any superset
D′ ⊃ D, i.e. P

′
is coherent on D′ and equal to

P on D.

Although sometimes too weak, the condition of avoid-
ing sure loss is anyway relevant to the theory of im-
precise previsions because:

1) it is easier to assess (and to check) than coher-
ence;

2) given an upper prevision P on D that avoids sure
loss there always exists a canonical way of cor-
recting P into a coherent prevision PE , which
can be defined on any set of random numbers
D′ ⊃ D. PE is termed natural extension in [9]
and is a key concept in the theory of coherent
upper previsions. We shall discuss it in Section
3.2.

Let us define M(P ) as the set of all precise coherent
previsions P on D which are dominated by P on D,
i.e. are such that P (X) ≤ P (X) for each X ∈ D.
Upper previsions that avoid sure loss and coherent
upper previsions may be characterized as follows [9]:

Theorem 1 An upper prevision P on D avoids sure
loss iff M(P ) 6= ∅.

Theorem 2 (Upper envelope theorem) An upper
prevision P on D is coherent iff (M(P ) 6= ∅ and)

P (X) = sup
{
P (X) : P ∈M(P )

}
(3)

for all X ∈ D (actually, sup is attained).

We shall discuss in Section 2.5 some relevant implica-
tions of the upper envelope theorem in our context.

Several necessary conditions for coherence are known
[9], but no subset of such conditions seems to be also
sufficient for coherence when D is arbitrary. The fol-
lowing necessary conditions will be used in the sequel:

a) P (X + α) = P (X) + α, ∀ α ∈ IR;

b) if X ≤ Y then P (X) ≤ P (Y ) (monotonicity).

However, coherent upper previsions may be charac-
terized through some simple axioms if D has a special
structure. The most relevant case is the following:

Theorem 3 Let L be a linear space and P a mapping
from L into IR. Then P is coherent on L iff:



P1) P (X) ≤ supX, ∀X ∈ L
P2) P (λX) = λP (X), ∀X ∈ L, ∀ λ > 0

S) P (X + Y ) ≤ P (X) + P (Y ),∀X, Y ∈ L.

2.3 Consistency of risk measures

Relation (1) and the avoiding sure loss and coherence
definitions in Section 2.2 let us define in a natural
way two corresponding consistency definitions for risk
measures defined on arbitrary sets of random num-
bers.

Definition 3 Given an arbitrary set D of random
numbers, a mapping ρ from D into IR is a risk mea-
sure that avoids sure loss iff there exists an upper pre-
vision P on D∗ = {−X/r : X ∈ D} that avoids sure
loss such that ρ(X) = P (−X/r), ∀X ∈ D.

Definition 4 Given an arbitrary set D of random
numbers, a mapping ρ from D into IR is a coherent
risk measure on D iff there exists a coherent upper
prevision P defined on D∗ = {−X/r : X ∈ D} such
that ρ(X) = P (−X/r).

Clearly, the behavioural justification of these condi-
tions is strictly related to the behavioural justifica-
tion of the corresponding conditions for upper pre-
visions (see [9] for a wide discussion). For instance,
if ρ incurs sure loss on D, a person who considers
ρ(X) as the infimum of the amounts he would charge
to accept X can be made a sure loser by offering
him X1, . . . , Xn ∈ D together with some amounts
µi > ρ(Xi) (i = 1, . . . n), for some choice of the non-
negative coefficients s1, . . . , sn

2.

Practical risk evaluations on each position in D are
often made by a so-called regulator. The regulator
does not necessarily own or manage the positions, but
might be jointly liable in cases of insolvency or unsat-
isfactory results and often has the power of deciding
whether a risk can be undertaken or not (for instance,
when the regulator is a government agency control-
ling insurance activity or a holding controlling some
of its subsidiaries). So it is the regulator who could
be made a sure loser in the hypotheses just described
above. There is anyway a difference between this situ-
ation and other common applications of the theory of
imprecise previsions like, say, bookmaking: here the
counterparts - the regulator and the insurance com-
pany, for instance - usually cooperate to avoid sure

2The coefficients can always be (non-negative) integer num-
bers, because the condition of avoiding sure loss can be equiva-
lently defined replacing s1, . . . , sn ≥ 0 with s1, . . . , sn ∈ IN and
allowing X1, . . . , Xn to be not necessarily distinct (the same
applies to the coherence definition). This lets every Xi repre-
sent non infinitely divisible quantities.

losses (if the regulator bears a sure loss, that’s be-
cause the insurance company is insolvent), whilst the
bookie would very much like his opponent(s) to suffer
from a sure loss (and vice versa).

If a risk measure ρ is coherent, it can be given an
interesting interpretation as follows. Consider the risk
X + k, where k is a real constant. By definition and
property a) in Section 2.2,

ρ(X + k) = P (−(X + k)/r) = P (−X/r)− k/r

= ρ(X)− k/r.

From this and i) in Section 2.1 it follows that, when
ρ(X) > 0, ρ(X) is the present value at time t = 0
of the minimum amount k which must be added to
the risk X at T to make the risk X + k desirable.
Operationally, the simplest way to add this minimum
amount k to X at T is to make an investment of ρ(X)
in the reference instrument at t = 0 (k = rρ(X))
Analogously, if ρ(X) < 0, −ρ(X) is the present value
at t = 0 of the maximum amount h which can be
subtracted from X at T , keeping X − h desirable.

2.4 Coherent risk measures on linear spaces

Coherent risk measures have been recently introduced
in a series of papers, including [1, 2, 4], by P. Artzner,
F. Delbaen, S. Eber and D. Heath. They have been
defined through a set of axioms on a linear space of
random numbers. In this section we show that our
concept of coherent risk measure generalizes the one
given in literature and reduces to it when the extra
assumption is made that the set of risks D under eval-
uation is a linear space. Clearly, this assumption is
fairly restrictive and not quite realistic in practice.
Consider also that it is guaranteed from iii) of Sec-
tion 2.2 that whenever we need to evaluate risks in a
larger set D′, any coherent risk measure on D can be
coherently extended to D′. So it is really unnecessary
to define coherent risk measures on structured sets of
random numbers only. Nevertheless, when no struc-
ture is required, it does not seem possible to charac-
terize coherence of previsions through a simple system
of axioms (see Section 2.7 in [9]). This suggests that
sets of axioms including subadditivity and other im-
portant and also intuitively necessary conditions for
coherence of risk measures are not sufficient to char-
acterize these measures, unless convenient constraints
are imposed on D.

We shall refer to [2] to recall the basic assumptions
and the definition of coherent risk measure on linear
spaces. Although other papers, like [1] and [4], mod-
ify some of these assumptions, we shall not consider
these variants here, since they would leave essentially
unchanged the conclusions of this paper.



It is assumed in [2] that:

a) hypothesis a) of Section 2.1 holds;

b) the set of random numbers D is a linear space,
D = L. 3

Also, in [2] a fixed finite partition describes all distinct
values of every X in L and, consequently, every X is a
simple random number, i.e. can have a finite number
of distinct values. Anyway, the finiteness assumption
is unnecessary in our framework and will not be made
here. Given a) and b), a coherent risk measure is
defined in [2] as follows:

Definition 5 Let L be a linear space of random num-
bers. A mapping ρ from L into IR is a coherent risk
measure iff it satisfies the following axioms:

T) ∀X ∈ L, ∀ α ∈ IR, ρ(X +αr) = ρ(X)−α (trans-
lation invariance)

PH) ∀X ∈ L, ∀ λ ≥ 0, ρ(λX) = λρ(X) (positive
homogeneity)

M) ∀X,Y ∈ L, if X ≤ Y then ρ(Y ) ≤ ρ(X) (mono-
tonicity)

S) ∀X,Y ∈ L, ρ(X + Y ) ≤ ρ(X) + ρ(Y ) (subaddi-
tivity)

In order to make use of Theorem 3 in a convenient
form for our purpose, we formulate the following
lemma, whose trivial proof is omitted.

Lemma 1 Let L be a linear space of random num-
bers, r a positive real number. A mapping µ from L
into IR satisfies the following axioms:

P1) µ(X) ≤ sup(−X/r), ∀X ∈ L
P2) µ(λX) = λµ(X), ∀X ∈ L, ∀ λ > 0

S) µ(X + Y ) ≤ µ(X) + µ(Y ), ∀X, Y ∈ L

if and only if there exists a coherent upper prevision
P on L such that µ(X) = P (−X/r).

Then we have:

Proposition 1 Let L be a linear space of random
numbers. A mapping ρ from L into IR satisfies ax-
ioms T), PH), M) and S) of Definition 5 if and only
if it satisfies axioms P1), P2), S) of Lemma 1.

3The model in [2] considers also investments in possibly dif-
ferent countries and therefore includes future random exchange
rates. To simplify the sequel, we shall not include this variant.
It any case, it can be easily introduced without substantial
modifications in the results.

Proof Let us prove that T), PH), M) and S) imply
P1), P2), S). Actually, the only non-trivial implication
is to see that P1) holds, which can be shown apply-
ing subsequently M) and T) (noting that PH) implies
ρ(0) = 0), starting from the inequality inf X ≤ X and
obtaining

ρ(X) ≤ ρ(inf X) = ρ(
inf X

r
r)

= − inf X/r = sup (−X/r) .

Assume now that P1), P2), S) hold. We only have to
show that T), PH) with λ = 0, and M) hold.
To obtain T), note that if ρ satisfies P1), P2), S)
then ρ(X) = P (−X/r) by Lemma 1. Applying the
necessary condition for coherence a) in Section 2.2,

ρ(X + αr) = P (−(X + αr)/r)

= P (−X/r)− α = ρ(X)− α.

Use P1) with X = 0 to obtain ρ(0) ≤ 0. On the other
hand, from S) ρ(0) = ρ(0 + 0) ≤ ρ(0) + ρ(0), so that
ρ(0) ≥ 0. Hence ρ(0) = 0 and PH) holds also for
λ = 0.
Finally, suppose X ≤ Y . From Lemma 1 and condi-
tion b) in Section 2.2 it follows

ρ(Y ) = P (−Y/r) ≤ P (−X/r) = ρ(X)

so that M) holds too. ¥
Applying Lemma 1 and Proposition 1, and recalling
Definition 5, we immediately obtain the following ba-
sic result:

Proposition 2 Let L be a linear space of random
numbers. A mapping ρ from L into IR is a coher-
ent risk measure according to Definition 5 if and only
if there exists a coherent upper prevision P on L such
that ρ(X) = P (−X/r), for every X ∈ L.

We can therefore conclude that Definition 4 and Def-
inition 5 coincide when the set of risks D is endowed
with a linear space structure.

2.5 Obtaining coherent risk measures via
envelope theorems

Coherent risk measures do not necessarily require the
knowledge of an underlying probability distribution
for each X, and with respect to this they differ from
other risk measures, like V aR to be discussed in the
next section (see also the risk measure in 3.1.2). This
fact does not seem to have been recognized in ear-
lier literature on coherent risk measures, as appears
from prior use of upper envelope theorems to assess
ρ. In fact, in our framework the following proposition
holds, ensuing from the upper envelope theorem and
Definition 4.



Proposition 3 ρ is a coherent risk measure on a set
D if and only if

ρ(X) = sup {P (−X/r) : P ∈ P} (4)

where P is a (non-empty) set of coherent precise pre-
visions on D∗ = {−X/r : X ∈ D}.

Proposition 3 justifies the correctness of procedures
for getting a risk measure out of ‘scenarios’, where a
scenario is a (precise) coherent prevision P on D∗ and
the measure is obtained for each X ∈ D performing
the supremum of P (−X/r) over all considered scenar-
ios.

As hinted above, the use of envelope theorems with
these purposes is not new in risk measure theory (see
[2]), but Proposition 3 exploits the basic features i)
and ii), Section 2.2, of coherent imprecise previsions to
achieve a more general usage of scenarios than it was
previously recognized. Precisely, from ii) a scenario
may concern only the risks we are really interested
in, i.e. those in D, and, for each X ∈ D, by i) a
scenario requires only assessing a precise prevision for
X, a much simpler task than evaluating its probability
distribution.

3 VaR and coherence

Some risk measures which are not coherent are com-
monly used in practice, like Value-at-Risk (V aR).
V aR is not coherent, since it is not subadditive [2].

It is an interesting problem to see how far from co-
herence are incoherent risk measures. To provide
some answers, we discuss the relationship between the
avoiding sure loss condition (Definition 3) and V aR in
Section 3.1, and ways of ‘correcting’ V aR and, more
generally, other incoherent risk measures in Section
3.2.

3.1 VaR does not necessarily avoid sure loss

We shall use the following definition of V aRα, taken
from [2]:

Definition 6 Let X be a random number, whose
probability distribution is P . The number q is an α-
quantile for X if

P (X < q) ≤ α ≤ P (X ≤ q) (5)

Define then

q+
α (X) = inf {x : P (X ≤ x) > α} (6)

V aRα(X) = −q+
α (X/r) (7)

Clearly, given P , we obtain more prudent risk evalu-
ations from V aRα when α gets smaller.

In order to be assigned on a set D of random numbers,
V aR requires more (and more precise) information
than a coherent risk measure: we should be able to
assess (at least) the marginal probability distribution
P for each X ∈ D, instead of giving (imprecise) first-
order moment evaluations.

The following example shows that V aR may fail to
avoid sure loss.

Example Let IP be a finite partition, whose atoms
(not impossible events, mutually disjoint and whose
logical sum is the sure event Ω) are e1, . . . , en.

Denoting with |ei| the indicator function of ei, let
D = {Xi : Xi = −|ei|, i = 1, . . . , n}, and assign
a probability distribution on IP , such that P (Xi =
−1) = P (ei) = pi, i = 1, . . . , n.

We prove now that V aRα incurs sure loss on D if and
only if α ≥ max{p1, . . . , pn}.
Preliminarily, consider Xi ∈ D. It ensues easily from
Definition 6 that if (1 >)α ≥ pi, V aRα(Xi) = 0,
while if 0 < α < pi, then V aRα(Xi) = 1/r.

To prove the ‘if’ implication, let α ≥ max{p1, . . . , pn}.
It is sufficient by Definition 3 to show that, for some
choice of the Xi ∈ D and of the corresponding si, the
ensuing random number G is negative. In fact, select
X1, . . . , Xn and put s1 = . . . = sn = 1. We obtain

G =
n∑

i=1

si

(
P (−Xi/r) + Xi/r

)
=

n∑

i=1

−|ei|/r

= −1/r

n∑

i=1

|ei| = −1/r < 0.

To prove the ‘only if’ part, let ph = max {p1, . . . , pn}.
Since P (Xi ≤ Xi(eh)) = P (Xi ≤ 0) = 1 for i 6= h, it
is ph = mini=1,...,n P (Xi ≤ Xi(eh)). Then, if α < ph,
V aRα avoids sure loss by Proposition 4 below. ¥
In the example above V aRα avoids sure loss if α is
sufficiently small. The next proposition shows that
this happens also in more general situations.

Proposition 4 Let D = {Xi}i∈I be a family of arbi-
trary (bounded) random numbers, IP a partition whose
atoms describe all values for Xi (i ∈ I) which are
jointly possible and P a probability distribution on IP .
If, for some ω ∈ IP , condition

0 < α < inf
i∈I

P (Xi ≤ Xi(ω)) (8)

holds, then V aRα avoids sure loss on D.



Proof Considering Definition 3, we prove that the
upper prevision on D∗ = {−X/r : X ∈ D} such that
P (−X/r) = V aRα(X) ∀X ∈ D avoids sure loss.
By Definition 1, we have to show that for each n,
X1, . . . , Xn ∈ D, s1 . . . , sn ≥ 0

G =
n∑

i=1

si (V aRα (Xi)− (−Xi/r))

=
n∑

i=1

si

(
Xi/r − q+

α (Xi/r)
)

(9)

has at least one non-negative value. In fact, since for
i = 1, . . . , n

P (Xi ≤ Xi(ω)) = P (Xi/r ≤ Xi(ω)/r) > α

we get
q+
α (Xi/r) ≤ Xi(ω)/r.

If follows from the above inequality that G(ω) is non-
negative, being a sum of n non-negative terms. ¥

Corollary 1 If the cardinality of partition IP in
Proposition 4 is m, then V aRα avoids sure loss for
α < 1/m.

Proof Just apply Proposition 4 to an atom of IP
whose probability is not less than 1/m (there exists
at least one such atom). ¥

3.1.1 Comment

When we know the distribution functions of each
Xi (i ∈ I), by Proposition 4 the upper bound for
α can be raised to α < supω∈IP infi∈I P (Xi ≤ Xi(ω)).
When the partition IP is finite, the sufficient condi-
tion of Corollary 1 does not require, on the contrary,
assessing any probability evaluation on IP . It is not
difficult to see, using Proposition 4, that V aR can
avoid sure loss in many practical circumstances.

At any rate, the most interesting implication is that
getting a more prudent and an at least avoiding sure
loss risk evaluation are matching goals when V aRα is
the risk measure: one tends to obtain both of them
by lowering α.

3.1.2 A note on the ‘average risk’

Other well-known risk measures may always avoid
sure loss although they are not coherent, therefore
being in a sense closer then V aR to coherent risk
measures. One such measure, mentioned in [2] and
whose usage in life insurance is quite old, is the ‘aver-
age risk’ (‘mittleres Risiko’) ρAR, which could be de-
fined in our framework on a set D of random numbers
putting, for each X ∈ D, ρAR(X) = P (X−), where

X− = max {−X, 0} and P is a precise coherent pre-
vision or an expectation, if a joint distribution on all
X ∈ D is given (as required in the original formula-
tion of this measure). The extra assumption r = 1 is
made. Since X− ≥ −X, then P (X−) ≥ P (−X) and
hence ρAR avoids sure loss by Theorem 1.

3.2 Coherent corrections of risk measures
avoiding sure loss

It follows from Definition 3 that the problem of cor-
recting risk measures avoiding sure loss into coherent
ones can be viewed as the problem of correcting upper
previsions that avoid sure loss.

As mentioned in 2), Section 2.2, an upper prevision
P given on D that avoids sure loss can be corrected
by building its natural extension PE . Formally, the
natural extension can be defined for X in any set of
random numbers D′ ⊃ D as

PE(X) = infN

where, putting gi = P (Xi)−Xi, it is

N =

{
α : α−X ≥

n∑

i=1

λigi, for some n ≥ 0,

Xi ∈ D, λi ≥ 0, α ∈ IR

}
.

As is well known [9], the natural extension satisfies
the following properties:

a) PE is a coherent upper prevision on D′;
b) PE(X) ≤ P (X), ∀X ∈ D;

c) if P
∗

is a coherent upper prevision on D′ such
that P

∗
(X) ≤ P (X), ∀X ∈ D, then P

∗
(X) ≤

PE(X), ∀X ∈ D′;
d) P is coherent if and only if PE is

the maximal coherent extension of P
(PE = P on D);

e) P avoids sure loss if and only if its natural exten-
sion is finite.

It follows from e) that it is essential for a risk measure
ρ to avoid sure loss, if we wish to be able to replace it
by its natural extension. This can be done correcting
ρ(X) = P (−X/r) into ρ∗(X) = PE(−X/r). From a),
ρ∗ is coherent and, from c), it is the least-committal
coherent correction of P .

Property b) tells us that the natural extension ρ∗(X)
of ρ(X) is a less prudential risk estimate then ρ(X).



In fact, it requires (the same or) a smaller amount
than ρ(X) to be added to a non-desirable risk X to
make it desirable (cfr. the end of Section 2.3) and this
might be a motivation for seeking other corrections of
an incoherent ρ(X); the matter is partly discussed
below in this section. Anyway, being least-committal
means that the natural extension of ρ(X) is the more
prudential coherent risk estimate among those which
are less prudential than ρ(X).

The problem discussed in this section has already
been tackled in [2], Section 4.2, without resorting to
the theory of imprecise previsions. In our framework,
it can be proved that conditions 4.1 and 4.2 in [2]
are equivalent, respectively, to Definition 3 (ASL) and
Definition 4 (coherence); further, the quantity ρψ(X),
Proposition 4.2, corresponds to ρ∗ as defined above.

Operationally, when D is finite and all X in D are sim-
ple random numbers, the problem of finding the nat-
ural extension can be solved with linear programming
techniques, similar to those discussed, for instance, in
[6, 8, 11].

It is anyway important to observe that there might
be some practical constraints which prevent from em-
ploying the natural extension correction of a risk mea-
sure, as noted in [2] referring to V aR. For instance,
a regulator might impose a lower bound for any cor-
rection ρ∗ of an incoherent V aR, like ρ∗ ≥ V aRα.
This appears to be a peculiar feature of the appli-
cation of imprecise previsions theory to risk prob-
lems; of course, if this is the case the correction
problem has generally no unique solution. Consider,
for instance, a partition IP = {e1, e2, e3} such that
P (e1) = 0.02, P (e2) = 0.04 and let X1 = −2|e1|,
X2 = −|e2|, D = {X1, X2, X1 + X2}. If α = 5%
and r = 1, it is V aRα(X1) = V aRα(X2) = 0, whilst
V aRα(X1 + X2) = 1, so that V aRα is not coherent
on D (although it avoids sure loss by Corollary 1) for
lack of subadditivity. Therefore, an investor willing to
assign a ρ∗ as small as possible, without violating the
bounds imposed by the regulator, should choose a risk
measure ρ∗ on D satisfying ρ∗(X1) ≥ 0, ρ∗(X2) ≥ 0,
ρ∗(X1 + X2) = ρ∗(X1) + ρ∗(X2) = 1 (it can be easily
seen that such a ρ∗ is coherent). In this simple ex-
ample, ρ∗(X1) can be given any value in [0, 1]. The
choice of a specific ρ∗(X1) depends on additional con-
siderations. For instance, the loss X1 may cause is
twice as much as the loss due to X2, which suggests
overweighting ρ∗(X1), but event X2 = −1 is twice
as likely as X1 = −2, which suggests underweight-
ing ρ∗(X1). The ultimate choice for ρ∗(X1) is not so
evident.

4 Conclusions

In this paper we have outlined an approach to risk
measures based on the theory of coherent imprecise
previsions. Such an approach leads naturally to a
more general definition of coherent risk measure and
provides useful tools to investigate many properties of
these as well as other risk measures. In particular, we
discussed whether V aR satisfies a weaker consistency
condition named ASL, giving sufficient conditions for
this.

In our opinion, there is scope for further extending the
use of imprecise previsions in this area. In particular,
the theory of imprecise previsions has been studied
also in the case of conditional previsions. From this
and the results in Section 2 it appears that a related
notion of coherent conditional risk measure could be
introduced as a next generalization.
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