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Abstract
A new statistical theory is outlined which builds a
bridge between frequentist and Bayesian approaches
and very naturally uses upper and lower probabilities.
It started with an attempt to investigate how far one
can get with a frequentist approach; this approach
goes beyond the Neyman-Pearson and the Fisherian
theory in explicitly using intersubjective epistemic up-
per and lower probabilities allowing an operational
frequentist interpretation (not tied to repetitions of an
experiment), and in deriving what is valid of Fisher’s
mostly misinterpreted fiducial probabilities as a very
special case within a broader framework. It formally
contains the Bayes theory as an extremal special case,
but at the other extreme it also allows starting with
the state of total ignorance about the parameter in
an objective, frequentist learning process converging
to the true model, thereby solving a problem of arti-
ficial intelligence (AI). The general theory describes
(rather similar) optimal compromises between fre-
quentist and Bayesian approaches within (and out-
side) either framework, thus also providing a new class
of “least informative priors”. There is also a connec-
tion with information theory. Key concepts are “suc-
cessful bets”, more specifically “least unfair successful
bets”, “cautious surprises”, and “enforced fair bets”,
including “best enforced fair bets”. The main em-
phasis is on prediction. When going from inference to
decisions, upper and lower probabilities (which avoid
sure loss) are replaced by proper probabilities (which
are coherent), somewhat analogous to Smets’ pignistic
transformation of belief functions. Much still needs
to be done, but several examples for the binomial
(the “fundamental problem of practical statistics”)
have been worked out, and there are also first (rather
limited) solutions for continuous one-parameter situ-
ations, including their robustness problem.

Keywords. Foundations of statistics, frequentist
approach, Bayesian approach, Neyman-Pearson the-
ory, Fisherian theory; upper and lower probabilities,

aleatory and epistemic probabilities, frequentist inter-
subjective epistemic probabilities, fiducial probabili-
ties; successful bets, least unfair successful bets, best
enforced fair bets; cautious surprises; state of total
ignorance, objective learning process; inference and
decisions; prediction for binomial data.

1 Introductory notes

1.1 Some general remarks

The work outlined here grow out of an attempt to clar-
ify the foundations of traditional statistics (including
Bayesian statistics, but not including belief function
theory and other more recent developments, though
there turned out a number of formal parallels with
them). The results went far beyond traditional statis-
tics and contained a number of surprises for me.

For one thing, I became convinced that upper and
lower probabilities should be a central tool in statis-
tics, rather than an exotic marginal structure.

Secondly, I now believe that the distinction between
aleatory probabilities (which exist, ore are tentatively
supposed to exist, “objectively” in Nature, usually un-
known to us) and epistemic probabilities (referring to
what we actually know, or believe to know) is impor-
tant to explain and dissolve the discrepancies between
different schools of statistics. Neyman explicitly con-
sidered only aleatory probabilities, while both “objec-
tive” and “subjective” Bayesians consider only epis-
temic probabilities, hence the twain can never meet
(at least strictly speaking). Fisher worked mostly
with frequentist aleatory probabilities (like Neyman),
but I now consider his fiducial argument the first at-
tempt (wrong in execution, but correct in principle
and vision) to introduce frequentist epistemic prob-
abilities on a broader scale and thus bridge the gap
between aleatory and epistemic views.

The fiducial argument intrigued, puzzled and inspired
many great statisticians, including Kolmogorov,



Tukey, Dempster, Seidenfeld, Fine, and many others;
but to my limited knowledge, probably all this work,
with the remarkable exception of [30], was based on
Fisher’s own false interpretation leading to a proba-
bility distribution on the parameter space. Perhaps
my greatest surprise was that the — proper — fidu-
cial argument came out naturally as a very special
case of my theory, thus embedding it into a much
broader framework, including also discrete distribu-
tions (for the price of upper and lower probabili-
ties). In this framework, also a (nontrivial) apos-
teriori interpretation of confidence intervals (by fre-
quentist intersubjective epistemic lower probabilities)
becomes possible (impossible and strictly forbidden
in the Neyman-Pearson theory, but rightly requested
by all “unspoiled” intelligent users of statistics); and
this fact may shed some new light on the early debate
between Fisher and Neyman on confidence intervals.

A final surprise was a certain symmetry between the
Bayesian approach and my extended frequentist ap-
proach, leading to solutions in either framework clos-
est to the other one, or even in between both frame-
works. For various reasons, there is a stress on predic-
tion, rather than parameter estimation. Throughout
the work, I make free use of the age-old equivalence
between probabilities and bets: it turns out that two-
sided (in particular Bayesian “fair”) bets correspond
to proper probabilities, while one-sided bets corre-
spond to lower (and hence upper) probabilities.

1.2 A prototype example for the new theory

Consider a sequence of “independent, identical” ex-
periments with two possible outcomes (“success” or
“failure”) in each case (i.e., a sequence of independent
Bernoulli trials), and assume that nothing is known
apriori about the probability of success θ. Given that
in n (≥ 0) past trials, X successes have been observed,
how can one bet on the event that in k (≥ 1) future
trials, the number of successes Y lies in some given set
A? (E.g., a new medical treatment, with no previous
experience, has been successful in 3 out of 5 cases;
what are the “chances” that it will be successful in
exactly 2, or at least 2, cases out of 4 future cases?)
Cf. also [28].

Let m (0 ≤ m ≤ 1) denote a kind of lower probability
leading to the (one-sided!) bet m : (1 − m) on the
event considered. A natural desideratum is that the
expected gain EG of the bet is ≥ 0. Clearly, this can-
not be achieved in general for all θ conditionally on
any given X = x (except by the trivial bet 0 : 1), be-
cause x can always be “misleading” by chance. But,
amazingly, it can be achieved if we are allowed to
average also over the X’s that “might have been ob-
served”, that is, if we take the joint expectation over

the distribution of X and Y . By this step, we lose full
conditionality, to be sure, but we gain a frequentist
epistemic statement about the “chances” of A (while
Bayes solutions are conditional, but in general have
no objective frequentist interpretation). We call such
a class of bets on A (one for each x) “successful” for
short (instead of : “not unsuccessful on the average”).
More formally:

Definition 1 (Starting with total ignorance about θ)
a (class of) bet(s) on A (one for each x), described by
m(Y ∈ A|.), is called successful iff

EθG = EX
θ EY

θ G ≥ 0 ∀θ,

or equivalently iff

EX
θ m(Y ∈ A|X) ≤ Pθ(Y ∈ A) ∀θ.

(The superscript denotes the random variable with re-
spect to whose distribution the expectation is taken.)

Example: Let n = k = 1, A = {1}.
If X = 0, we must bet 0 : 1, because θ might be 0.
By contrast, if X = 1, any bet c : (1− c) (0 ≤ c ≤ 1),
combined with the trivial bet for X = 0, is successful,
because EθG = Pθ(X = 1) · ((1− c) · Pθ(Y = 1)− c ·
Pθ(Y = 0)) + Pθ(X = 0) · (1 · Pθ(Y = 1)− 0 · Pθ(Y =
0)) = θ·((1−c)θ−c(1−θ))+(1−θ)·θ = θ·(1−c) ≥ 0 ∀θ.

As in this example, in general an infinity of success-
ful bets exists, and the question arises which one to
select. A naive idea would be to select the (or an)
“admissible” (i.e. the — or a — most extreme) one,
in our example 1 : 0 if X = 1 (and of course 0 : 1 if
X = 0). But there is a deeper idea.

Bayesians rightly argue that if one has to make a deci-
sion (as opposed to inference, which for them is effec-
tively the same), one has to act as if one has a prob-
ability distribution. Correspondingly, the Bayesians
consider (only) two-sided bets, where the opponent
can change sides. If he/she can change sides freely
depending on each x observed, in general successful
bets are not possible anymore; but we can ask for the
(class of) “fair” bet(s) that minimizes the maximum
expected loss under all changes of sides by the oppo-
nent. They are called “best enforced fair bets” and are
in a sense the Bayesian solutions (with correspond-
ing distinguished priors) coming closest to fulfilling a
frequentist requirement. (In our example, with the
natural linear loss function, these bets are: 3 : 1 on
the same event again, and 1 : 3 on the opposite event,
with minimax risk Re := 1/4.)

Returning to the selection problem for successful bets,
we can symmetrically also ask for the successful bets
which come closest to a Bayesian solution (viz., which



minimize the maximum risk under all changes of sides
among all successful bets). They are called “least
unfair successful bets”.

In our example, when we offer a successful bet with
c : (1 − c) if X = 1, assume our opponent knows θ
(this is allowed). He/she will always switch sides if
X = 0, making our conditional (on X = 0) expected
gain = −θ. If X = 1, he/she will switch iff θ >

(=)c,
making our conditional expected gain = −|θ−c|. Our
overall expected gain is then −θ(1−θ)−|θ−c|θ. The c
which minimizes the maximum expected loss over all
θ is given by 1−c = 6−4

√
2, hence c ≈ 0.6569 (closer

to 1 than to 0, as seems intuitively reasonable). The
minimax risk is Rf := 6− 4

√
2 ≈ 0.3431.

It is to be expected that the frequentist and Bayesian
statistics closest to each other become quickly very
similar as more and more information is contained in
the past, that is, as n grows.

In general, we can compute for every bet its maxi-
mum risk r1 when considered as one-sided bet (≤ 0
for successful bets, ≥ 0 for Bayesian fair bets), and its
maximum risk r2 when considered as two-sided bet
(≥ Rf ≥ Re for successful bets, ≥ Re for Bayesian
bets). We thus have reached a certain symmetry
between frequentist and Bayesian solutions and can
consider in the “risk set” of the pairs (r1, r2) in R2

also the “admissible” lower left boundary with pro-
cedures which are neither quite frequentist nor quite
Bayesian, but may be useful compromises between the
two classes.

2 Overview over the theory

2.1 Introduction

Since it is not possible to describe the details of the
new theory in a short talk or a short paper, I shall
try to give a rather nontechnical overview with an
introductory guide to the more detailed literature and
an outline of the past achievements and problems and
possible future developments as I see them presently.

It should be noted that parts, pieces and fragments
of the theory did already exist. However, the way
of combining them, enlarging them, and filling the
gaps by means of new concepts appears to be new -
somewhat surprisingly. In particular, I was amazed
to find out during my research how incomplete the
existing frequentist theories of statistics were.

The new theory uses and investigates (upper and
lower) probabilities and not, for example, belief func-
tions (cf., e.g., [6], [7], [31], [33]), possibility functions
[41], [8], or other “fuzzy” concepts [40], which have
their own realms of application; but it has in common

with the former theories that it uses pairs of numbers
to describe incomplete knowledge and thus can also
model the state of total ignorance in an appropriate
way. It differs from them by using different rules, and
by the numbers not being subjective, but having an
objective and operational frequentist interpretation.

As indicated in the abstract, the framework of the new
theory contains the Neyman-Pearson, Bayesian (with
“robust Bayesian”) and Fisherian theory, including
what is correct about fiducial probabilities (see be-
low); it makes strong use of likelihoods, solves a major
problem of artificial intelligence, and also has a close
connection with information theory.

The theory extensively utilizes the old relation be-
tween probabilities and bets, or odds ratios. Proper
probabilities are equivalent to two-sided bets (or pairs
of bets, on an event A and its complement), and in
the same way upper and lower probabilities can be
seen as equivalent to one-sided bets. (For one-sided
bets, cf. also [35].) While Bayesians like to consider
fair (pairs of) bets, with (mostly only subjectively)
expected gain equal zero, the theory also studies (one-
sided) “successful bets,” with (objectively) expected
gain greater or equal zero [18], [25].

A closely related concept is that of “cautious sur-
prises” [18], which is tied to information theory. It
is partly stronger, but not as nicely linear as success-
ful bets, and therefore its exploration has been largely
postponed.

There is also a partly new interpretation of the fun-
damental paper by Bayes [1], who was basically a fre-
quentist, in the light of the new theory ([14]; cf., e.g.,
[25]).

2.2 The basic framework for inference

The main framework is that of a given parametric
model (e.g., independent Bernoulli trials), with possi-
bly some prior knowledge about the parameter, with
a past observation X = x, a future observation Y
and a given event A in the range of Y about whose
occurrence some claims shall be made. The stress on
prediction is not accidental (cf. [22], [25]). A may also
depend on X, as in usual prediction intervals. If, in
a variant of the basic framework, A is a subset of the
parameter space, it has to depend on X (as with con-
fidence intervals and fiducial probabilities), otherwise
no nontrivial inference is possible in this theory.

Since our one-sided bet that Y will be in A, may de-
pend on the past observation x, we actually have to
consider a whole class of conditional bets, given x.
If we wanted to bet “successfully,” that is, with ex-
pected nonnegative gain, conditionally given any x,



we could not learn from the distribution of X, since
in general x may always be an extremely unlikely and
extremely misleading observation, and we would have
to take the worst possible case into account. Hence,
in order to obtain the frequentist property of being
successful, we have to be able to compensate for very
unlikely x’s, and this can most simply be done by av-
eraging the expected gain over the full distribution of
X. Such a (class of) bet(s) will be called “success-
ful” [18], [25], and amazingly enough, this definition
works. However, we have to give up full conditionality
and hence coherence [37]; but we still avoid sure loss.
If we try to interpret this in monetary terms, it means
we might perhaps have gained a bit more money, but
at least we did not lose any money on the average
(as Bayesians, despite their claims, very often do, cf.
[25]). A further simple thought shows that we can
always modify our bets so that we never lose money
for sure even in single cases. - For further aspects of
the one- and two-sided betting situation, see [25].

2.3 Fiducial probabilities

A surprising side result was the clarification of what
is correct about the fiducial argument ([9], [10]; for
a nice historical survey by a nonspecialist, see [39]).
Fiducial probabilities have been grossly misunder-
stood by almost everybody, including Fisher himself.
A remarkable exception is the paper by Pitman[30]
(I owe this reference to R. Staudte) who describes in
a clean and mathematically oriented way what the
(proper) fiducial argument actually achieves. Con-
trary to common belief (which has led to the well-
known counterexamples), it does not lead to a prob-
ability distribution on the parameter space, but to
(frequentist epistemic) probabilities for the correct-
ness of statements of the kind “θ < X + c” (e.g.
“θ < 2 + 3′′ for c = 3 if X = 2) which are random
statements depending on the random X (while θ is
still a fixed unknown constant). These (proper) prob-
abilities describe successful bets which are even fair
in the Bayesian sense (thus making something similar
to the Bayesian omelet after all, without breaking the
Bayesian eggs), but their framework and interpreta-
tion is different from the Bayesian one. For example,
in the simplest case (X ∼ N(θ, 1)), the fiducial ar-
gument and an improper Bayesian prior lead to for-
mally exactly the same formula, but the proper inter-
pretation, including the underlying probability space
(which is suppressed and hidden by the usual nota-
tion), is entirely different.

The (proper) fiducial argument is also closely related
to the appropriate frequentist aposteriori interpreta-
tion of confidence intervals (cf. above) which leads to
a series of independent bets, one for each of a series of

(normally different!) independent experiments, with
the appropriate (minimum) long run rate of successes.
Fiducial probabilities are derived as a special case of
a sideline (claims for random parameter sets, instead
of prediction of future events) of the new theory; they
are thus put into a much broader framework, which
also bridges the gap between continuous and discrete
distributions [18].

2.4 The decision problem

So far we have considered the inference problem of
how to describe in a quantitative and operationally
verifiable way our incomplete knowledge after obtain-
ing an observation X = x from a given parametric
model. The Bayesian claim that only proper proba-
bilities must be used (“enforced fair bets”) is not true
for inference (cf. also [34]), but appears to be true for
decisions. Thus, in vague analogy to Smets’ “pignistic
transformation” [32], the theory replaces, for decision
purposes, the upper and lower probabilities by proper
probabilities which cannot be successful anymore (a
few special cases excepted), but which minimize the
maximum expected loss (“best enforced fair bets and
probability distributions,” cf. [19], [25]). They can
usually (but not always) be obtained as special Bayes
solutions, from what may be called a new class of
“least informative priors.” These Bayes solutions (the
“least unsuccessful Bayes solutions”) are closest to be-
ing frequentist solutions in a minimax sense, and the
remaining gap can be measured by the minimax risk.

2.5 A bridge between frequentist and
Bayesian statistics

The solution for two-sided bets suggests a solution
for the selection of a particular successful bet in the
one-sided betting situation: choose the successful bet
which minimizes the maximum risk in the two-sided
betting situation (“least unfair successful bets”). Nat-
urally, this minimax risk is at least as big as the
one without restriction to successful bets. The cor-
responding bet is the one with frequentist interpre-
tation which in a sense comes closest to being also a
Bayesian solution, with the pertaining properties.

A few examples for the binomial situation (the “fun-
damental problem of practical statistics,” cf. [28],
[29]) have already been worked out [36], [23], [25].
They look reasonable and show that the best com-
promise frequentist and Bayesian solutions are not too
far apart. More generally, we may assign to any one-
sided bet its maximum one-sided and two-sided risk
and look at the set of all attainable risk vectors in
two dimensions, as in decision theory; this set con-
tains the two compromise solutions mentioned above



at the extremes of the interesting “admissible” lower
left “edge” of the risk set, and in addition presum-
ably many “admissible” solutions in between, which
are neither quite frequentist nor quite Bayesian, but
which build a natural bridge between the two ap-
proaches. In particular, ε-successful and ε-Bayes so-
lutions might conceivably contain a marked overall
improvement over the “pure” classes.

2.6 Some other aspects

Besides the binomial situation, there are also some
first results for the Poisson distribution (M. Wol-
bers, orally) and for rather general continuous one-
parameter problems, including a very first discussion
of the problems arising from the fact that paramet-
ric models are almost never exact (the binomial often
being an exception with a high degree of accuracy),
namely the “robustness problem” ([21]; for the back-
ground see [13], Ch. 1 and Ch. 8.1, and [27]).

The theory provides a new and sometimes surprising
outlook on customary problems in statistics. Thus,
in the testing situation, one (obviously) cannot bet
successfully (and nontrivially) on a fixed hypothesis;
however, one can bet successfully on the correctness
of a test decision [18].

For introductory reading on the theory, the three
main papers are [18], [21] and [25]; compare also [20]
and[22] for a wider horizon. [18] is the broadest paper
on the theory, but naturally least advanced; [21] pro-
vides some further solutions which have not yet been
followed up; and [25], probably the most readable of
the three, pushes farthest what so far has been the
main line of development.

3 Remarks on the previous papers
about the theory

3.1 The beginning

The following sections contain some remarks on the
development of the theory and its open problems, as
an aid to a deeper and better understanding of the
pertaining literature, and possibly as a stimulus for
further research.

The first tentative concept in the emerging theory was
the “Moeglichkeit” ([14], reproduced in [16]; [18]), not
to be confused with the “possibility” by Zadeh [41]
and Dubois and Prade [8]. It has some esthetic rea-
sons in its favor, but after [18] it disappeared into the
background. However, I think it might become use-
ful as a starting point once the theory for cautious
surprises is being worked out.

3.2 Successful bets and related concepts

The next concept was the key concept of successful
bets ([15], cf. also [17], both reproduced in [16]). It
led to a rich and multifaceted paper [18] containing
a number of germs for future research. In retrospect,
the following points may be noted:

The unifying formalism (loc. cit., p. 127) contains
both the start with total ignorance about the param-
eter (given the model), and the start with a Bayesian
prior, as extreme cases. The bridge in between is still
little explored (and still not fully formalized, although
a Choquet [4] capacity of order 2 on the parameter
space might be quite suitable as upper bound for the
priors). The bridge contains as examples restrictions
on the parameter space, and certain neighborhoods of
a Bayesian prior (cf. [26]; [27], p. 263f; and Berger’s
[2] work on the so-called “robust Bayesian” approach,
which is actually only “half-robust” since it does not
consider neighborhoods of the parametric model).

A little note on notation ([18], p. 127) in answer to
a frequent question: the reason for writing the upper
and not the lower probability as m without a bar, and
using it preferentially, was a far-reaching guess that
eventually cautious surprises will become the central
concept, although for successful bets the lower prob-
abilities would be more convenient.

The following sections (loc. cit.) on successful bets
and on fiducial probabilities (cf. also [15], [16], [17])
contain much material which apparently has to be
repeated again and again.

The “surprise” ([18], p. 131, cf. also [16], [17]), closely
related to entropy, is not the only one in the litera-
ture. For example, Good ([11]; the version in [12] is
incomplete), in the spirit of a pure mathematician,
defines a whole class of “surprises” whose (according
to Good, orally) most important member differs from
the above concept just by an additive constant.

The theorem on the relation between cautious sur-
prises and successful bets ([18], p. 131) is obviously
derived under a start with total ignorance (as H. Car-
nal - orally - noticed in 1995), but this assumption
was forgotten to be stated explicitly.

The various likelihood-based approaches (loc. cit., p.
132f) still wait for further exploration; but the pro-
posal and form of solution in the last paragraph - min-
imax MSE and maximum likelihood plus a constant -
have recently gained increased interest as possible al-
ternatives to least unfair successful bets, due to their
simple structures (needed in more general situations),
the results for the normal and other distributions [21],
and a remark by M. Wolbers (orally, 1999) on the re-
lation to unbiased estimation (cf. also the remarks on



best enforced fair bets below).

For the examples with n = k = 2 ([18], p. 134),
Steiner [36] found also admissible asymmetric solu-
tions, so that the claim about symmetrizing is wrong.
However, it still seems reasonable to generally restrict
oneself to symmetric solutions.

3.3 Enforced fair bets

The next major research step was the definition of
“best enforced fair bets,” a solution for the decision
problem, in [19]. In this short and highly condensed
paper, the formula is given for the solution with the
minimax expected monetary loss if the opponent is
allowed to choose sides depending on the past obser-
vation x, a strong generalization of simple fair bets to
the case of a set of conditional bets, given x. (Cf. the
detailed derivation in [25].) Unfortunately, the most
clever change of sides leads to the absolute value in-
stead of, for example, a square which would be easier
to handle mathematically (but then we would need
“squared” money); compare also the remark on MSE
above.

The examples given (and more fully described in [25])
are of general conceptual interest. They show that in
a very famous philosophical problem (how to bet in
the state of total ignorance), in the simplest case the
“principle of insufficient reason,” symmetric Bayesian
priors, Smets’ pignistic transformation [32], and the
best enforced fair bets yield the same solution, though
with a different derivation each time; and in other
cases, all solutions differ; moreover, the “least infor-
mative priors” for the “least unsuccessful Bayes so-
lutions” (cf. above) differ depending on the problem
considered, a very anti-Bayesian situation found, re-
markably, also in Bernardo’s [3] “reference priors,”
but probably nowhere else in Bayesian theory. In ad-
dition, some (unimportant?) “best enforced probabil-
ity distributions” cannot be obtained as Bayes solu-
tions.

In another simple example, it is shown that Laplace’s
“rule of succession,” which found a natural interpreta-
tion in terms of the “Moeglichkeit” [14], is not optimal
in the present context.

3.4 Successful bets in different parametric
models

The second somewhat larger paper [21] mainly ex-
tends the range of applicability of successful bets.
It also contains a sketch of a proof for asymptotic
consistency. Successful bets are derived for the one-
parameter normal and the (“nonregular”) exponen-
tial with shift parameter, by “transforming” likeli-

hoods into upper and lower probabilities, and asymp-
totically for general “regular” one-parameter models.
The sketch of a coarse first treatment of the robust-
ness problem makes strong use of the heuristics of ap-
proximate parametric models (cf., e.g., [13]) and uses
a nonstandard type of asymptotics (cf. [24] for some
general critical comments on asymptotics).

3.5 Least unfair successful bets, and an
outlook

The last major research step was the selection of a
canonical successful bet out of the infinity of suc-
cessful bets, namely the one that is closest to being
Bayesian (“least unfair successful bets”), which allows
also the definition of a class of optimal compromise so-
lutions between frequentist and Bayesian ones ([25],
cf. also [36] and [23]). For this solution of the unique-
ness problem for successful bets, the “detour” via en-
forced fair bets was needed. This “linear” part of the
overall theory (cf. [18] for a broader perspective) is
now well rounded off and rather encompassing, con-
taining and enlarging practically all the customary
statistical theories (including a critical appraisal of
subjectivist Bayesianism from a higher perspective),
and several examples for the fundamental case of 2
binomials have been worked out by Steiner [36] and
the author, showing that reasonable looking solutions
exist and can be found.

However, this view is a bit too rosy. The numerical so-
lutions are too complicated for general use; most had
to be found by brute force on the computer. I think
either they shall serve as benchmarks for a simple ap-
proximation which can be generally used in practice;
or some concepts shall be modified to yield a more
tractable mathematics (or both simultaneously). In
particular, it is tempting to replace the absolute value
signs in several formulas by squares; even Bayesians
might prefer the mean of the posterior to the median,
although the monetary interpretation does not seem
clear at present.

There is also a question whether the requirement of
successful bets may be in a sense “too strong,” since
some rather nice looking proposals for inference, for
example by Walley [38] and especially by Coolen [5] do
not fulfill it. This may have to do with the very strong
property that successful bets lead out of the state of
total ignorance without any additional arbitrariness.
Perhaps weakening the criterion by an epsilon might
have a big effect, but this would still leave the present
theory as a basis for comparison.

One weak point of the theory seems to be both un-
avoidable and minor: it would be nice to have a
method which is both fully coherent and fully success-



ful. However, within my framework this appears to be
impossible. If the probability of an event can be arbi-
trarily close to zero under different parameters, I do
not see how one can bet on it successfully and nontriv-
ially without “borrowing” from somewhere else. On
the other hand, the lack of coherence (or else of suc-
cessfulness, as with optimal Bayesian compromises)
can be quantitatively assessed, is rather limited and
disappears asymptotically, as more and more infor-
mation comes in.
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H. Thöni, editors, Applied statistics - recent de-
velopments; Pfingsttagung 1994 der Deutschen
Statistischen Gesellschaft, Festkolloquium zur
20-Jahrfeier des Fachbereichs Statistik, Univer-
sität Dortmund, Sonderhefte zum allgemeinen
statistischen Archiv, Heft 29, pages 131–148.
Vandenhoeck & Ruprecht, Göttingen, 1995.

[21] Frank Hampel. On the philosophical foundations
of statistics: Bridges to Huber’s work, and re-
cent results. In Helmut Rieder, editor, Robust



Statistics, Data Analysis, and Computer Inten-
sive Methods; In Honor of Peter Huber’s 60th
Birthday, number 109 in Lecture Notes in Statis-
tics, pages 185–196. Springer-Verlag, New York,
1996.

[22] Frank Hampel. What can the foundations dis-
cussion contribute to data analysis? And what
may be some of the future directions in robust
methods and data analysis? J. Statist. Planning
Infer., 57:7 – 19, 1997.

[23] Frank Hampel. How different are frequentist and
Bayes solutions near total ignorance? In Proc.
51th Session of the ISI, Contrib. Papers, Book 2,
Istanbul, pages 25–26, 1997.

[24] Frank Hampel. Is statistics too difficult? Canad.
J. Statist., 26(3):497–513, 1998.

[25] Frank Hampel. On the foundations of statistics:
A frequentist approach. In Manuela Souto de Mi-
randa and Isabel Pereira, editors, Estat́ıstica:
a diversidade na unidade, pages 77–97. Edições
Salamandra, Lda., Lisboa, Portugal, 1998.

[26] P. J. Huber. The use of Choquet capacities in
statistics. In Proc. 39th Session of the ISI, vol-
ume 45, pages 181–188 (discussion: 189–191),
1973.

[27] P. J. Huber. Robust Statistics. Wiley, N. Y.,
1981.

[28] K. Pearson. The fundamental problem of practi-
cal statistics. Biometrika, 13:1–16, 1920.

[29] K. Pearson. Note on the ‘fundamental problem
of practical statistics’. Biometrika, 13:300–301,
1921.

[30] E. J. G. Pitman. Statistics and science. J. Amer.
Statist. Assoc., 52:322–330, 1957.

[31] G. Shafer. A Mathematical Theory of Evidence.
Princeton University Press, Princeton, N. J.,
1976.

[32] Philippe Smets. Constructing the pignistic prob-
ability function in a context of uncertainty. In
M. Henrion, R. D. Shachter, L. N. Kanal, and
J. F. Lemmer, editors, Uncertainty in Artificial
Intelligence, volume 5, pages 29–39. Elsevier Sci-
ence Publ., 1990.

[33] Philippe Smets. The transferable belief model
and other interpretations of Dempster-Shafer’s
model. In P. P. Bonissone, M. Henrion, L. N.
Kanal, and J. F. Lemmer, editors, Uncertainty
in Artificial Intelligence, volume 6, pages 375–
383. Elsevier Science Publ., 1991.

[34] Philippe Smets. No Dutch Book can be
built against the TBM even though update
is not obtained by Bayes rule of condi-
tioning. Technical Report TR/IRIDIA/93–
9, Institut de Recherches Interdisciplinaires et
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