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Abstract

Thanks to the notion of locally strong coherence, the
satisfiability of proper logical conditions on subfami-
lies of the initial domain helps to simplify inferential
processes based on lower conditional assessments. Ac-
tually, these conditions avoid also round errors that,
on the other hand, appear solving numerical systems.
In this paper we introduce new conditions to be ap-
plied to sets of particular pairs of events. With re-
spect to more general conditions already proposed,
they avoid an exhaustive search, so that a sensible
time-complexity reduction is possible. The usefulness
of these rules in inferential processes is shown by a
diagnostic medical problem with thyroid pathology.

Keywords. Partial lower conditional probability as-
sessments, coherent inference, locally strong coher-
ence.

1 Introduction

Decision models based on partial (precise or interval
valued) conditional probabilities are nowadays well es-
tablished. The adoption of partial assessments is due
to their generality and wide applicability. Its roots are
in the de Finetti’s ideas (see for instance, [13, 14]) and
nowadays has found a wide application (as an incom-
plete, but relevant, reference see [2, 6, 8, 10, 12, 17]).
The peculiarity of incompleteness (i.e. the domain of
the valuation is not necessarily a well structured set,
like an algebra or a σ-algebra) distinguishes this the-
ory from the usual ones (based on a measure-theoretic
approach), where a complete initial evaluation is re-
quired. Sometimes the completeness hypothesis is not
realistic in applications, hence partial assessments can
better represent uncertainty.

On the other hand, such generality has the drawback
that the assessment must be coherent with a specified
numerical framework and this must be operationally
tested.

In our paper we will adopt an interval valued condi-
tional probability representation of uncertainty. Im-
precise probabilities are nowadays taken in considera-
tion by many authors with different motivations (for
a wide exposition of the latest “trends” refer to [15]).
Without facing the problem of the meaningfulness
of “imprecise” probabilities, we intend extreme val-
ues (possibly coinciding) assigned either as a (initial)
precise evaluation or as lower and upper probabili-
ties (possibly obtained by previous inferences). For a
deeper analysis refer to [11, 12].

Usually, precise or mixed models are treated as special
cases of interval valued assessments. Starting with
assessments

(

P (Ei|Hi), P (Ei|Hi)
)

on generic condi-
tional events Ei|Hi, i = 1, . . . , n, they are all reduced
to lower probability assessments by the duality prop-
erty

P (Ei|Hi) = 1− P (Ec
i |Hi). (1)

In [10], for coherent inference with lower probabili-
ties, a sequence of unconditional probabilities must
be found for each element of the domain. This is op-
erationally obtained by solving particular sequences
of linear systems. Anyhow, because of the possibil-
ity of giving zero probabilities to conditioning events
(see [8]) and of the derived notion of locally strong co-
herence [4], we avoid to build and solve some of such
linear systems. In fact, the constraints represented
by the linear systems can be equivalently fulfilled by
solvability of particular logical configurations among
the events.

A further sensible complexity reduction is also pos-
sible with a careful reduction from the lower-upper
to the lower assessment. In fact, if (1) is applied to
the entire evaluation domain, there is a duplication
of data with respect to the events with a precise as-
sessment associated. Operationally this duplication
brings to build and solve not needed linear optimiza-
tion problems. But we will avoid this unpleasant fea-
ture keeping trace of events, with precise probability



values, along all the procedure.

Moreover, by (1) pairs of elements with common con-
ditioning event (Ei|Hi and Ec

i |Hi) are introduced and
they must be always considered together for locally
strong coherence applicability (as it will clearly ap-
pear in the next sections). For this purpose, suitable
logical conditions will be introduced to deal with such
“twin” pairs.

We will also present a diagnostic problem about thy-
roid pathology to show applicability of the proposed
machinery.

2 Preliminaries

We represent the starting domain of evaluation
(knowledge base) as a family of conditional events
E = {E1|H1, . . . , En|Hn} with a set of logical con-
straints C among unconditional parts (representing in-
compatibility, inclusion or identity relations). Start-
ing by E and C, it is possible to build (just as an
operational tool) the set of atoms AE contained in
H0 =

∨n
i=1 Hi. Atoms are generated by the uncon-

ditional parts UE = {E1, . . . , En,H1, . . . , Hn} and are
built combining the possible occurrences of Ei ∧ Hi,
Ec

i ∧Hi and Hc
i for each Ei|Hi ∈ E , so that their car-

dinality will be of O(3n). In the sequel, when it will
not cause misunderstanding, we will omit the con-
junction connective ∧.

An assessment PE on the domain E is given and, with-
out loss of generality, we can suppose there are ex-
actly k precise probability evaluations P (Ei|Hi) = pi,
i = 1 . . . k, k ∈ {0, 1, . . . , n}, while uncertainty on the
other conditional events is expressed by distinct lower
and upper probability bounds

P (Ej |Hj) = p
j

and P (Ej |Hj) = pj j = k+1, . . . , n.

Starting from such partial assessment PE , an infer-
ence goal is posed: to find all coherent conditional
probabilities for a new event E|H, with E and H ar-
bitrarily chosen, also among events logically not de-
pendent on UE . In this way the classical statistical
inference based on Bayes Theorem is generalized.

In the following we sketch how a sound inference could
be performed.

If PE is transformed by (1) in a lower probability as-
sessment 1, we look for a class P of coherent “precise”
conditional probabilities on E whose lower envelope
coincides with PE (i.e. PE is coherent), so that we

1Note that applying (1) the domain E of the assessment PE
has a double number of events E = {E1|H1, . . . , E2n|H2n} with
En+j |Hn+j ≡ Ec

j |Hj and p
n+j

= 1−pn+j , j = 1, . . . , n. Any-
how the atoms AE remain the same after this transformation.

can compute

p = inf
P∈P

P (E|H) p = sup
P∈P

P (E|H) (2)

(where the single P (E|H) and P (E|H) are obtained
applying de Finetti’s fundamental theorem of pre-
vision for each conditional probability distribution
P ∈ P).

Anyhow, thanks to Theorem 4 in [9] it is possible to
skip to build the entire class P. In fact, one of the
three equivalence stated by the quoted theorem is:

Theorem 1 Let E = {E1|H1, . . . , E2n|H2n} be a fi-
nite set of conditional events and PE a lower proba-
bility assessment on it. Then the following statements
are equivalent:

i) there exists a class P of coherent conditional
probabilities on E whose lower envelope coincide
with PE ;

ii) for any Ei|Hi ∈ E there exists a class (usu-
ally not unique) of unconditional probabilities
{P i

0, P
i
1, . . . , P

i
ωi
}, each probability P i

αi
, αi =

0, . . . , ωi defined on a proper subset of atoms
Ai

αi
⊆ AE , such that there is a unique βi ∈

{0, . . . , ωi} with

∑

Ar⊆Hi

P i
βi

(Ar) > 0

p
i

=

∑

Ar⊆EiHi
P i

βi
(Ar)

∑

Ar⊆Hi
P i

βi
(Ar)

(3)

and, for each other Ej |Hj ∈ E, there exists a
unique δij ∈ {0, . . . , ωi} with

∑

Ar⊆Hj

P i
δij

(Ar) > 0

p
j

≤
∑

Ar⊆EjHj
P i

δij
(Ar)

∑

Ar⊆Hj
P i

δij
(Ar)

(4)

and moreover Ai
α′i

⊂ Ai
α′′i

for α′i > α′′i and
P i

α′′i
(Ar) = 0 if Ar ∈ Ai

α′i
.

Practically speaking, the class P can be composed by
conditional probabilities P represented by the classes
{P i

0, P
i
1, . . . , P

i
ωi
}, i = 1, . . . , 2n and, in the same pa-

per, it is shown such classes are attainable as solu-
tion of linear programming sequences Li = {Li

αi
},



i = 1, . . . , 2n, αi = 0, . . . , ωi, of the form

Li
αi

=



























































∑

Ar⊆EiHi

P i
αi

(Ar) = p
i

∑

Ar⊆Hi

P i
αi

(Ar)

if P i
αi−1(Hi) = 0

∑

Ar⊆EjHj

P i
αi

(Ar) ≥ p
j

∑

Ar⊆Hj

P i
αi

(Ar)

if P i
αi−1(Hj) = 0

∑

Ar∈Aαi

P i
αi

(Ar) = 1

(5)

The sequences Li are 2n because the first “strict
equality” constraint in (5) must rotate among
the elements of E = {E1|H1, . . . , E2n|H2n}, with
En+j |Hn+j ≡ Ec

j |Hj . So the index i in each sequence
Li (and hence also in each system Li

αi
) refers to a

“leading” conditional event Ei|Hi ∈ E .

As skillfully proved in [10], since elements P ∈ P are
characterized by satisfying constraints Li

αi
, bounds

(2) will be reached by those classes of solutions with
the minimum number of relevant constraints. Such
minimum number of constraints will be reached trying
to force H to have probability zero, so that the opti-
mization problem will be performed with the biggest
αi’s indexes (note that the greater is αi the lesser will
be the number of constraints in Li

αi
).

Operationally speaking, actual extreme values p and
p are obtained simply imposing the further constraint

∑

Ar⊆H

P i
αi

(Ar) = 0 (6)

to the linear systems in Li until it is possible (in the
sequel we will denote by ˜Li the sequences of systems
Li

αi
with such additional constraint). When, at level

ᾱi, there will not be solution any more (or when all
modified systems in ˜Li will have solution) the extra
constraint can be modified as

∑

Ar⊆H

P i
ᾱi

(Ar) = 1 (7)

so that values

P i(EH) = min
∑

Ar⊆EH

P i
ᾱi

(Ar)

P
i
(EH) = max

∑

Ar⊆EH

P i
ᾱi

(Ar)

can be computed under constraints Li
ᾱi

and (7) (or
simply set to 0 and 1, respectively). At the end it will
result

p = inf
i∈{1,...,2n}

P i(EH) p = sup
i∈{1,...,2n}

P
i
(EH)

(8)

(note that the problem of obtaining p and p is re-
duced to linear programming problems, even if at the
beginning it could appear a fractional problem).

In the context of coherence expressed trough a betting
scheme, the new value p (called “natural extension”)
is defined as the supremum value of µ for which there
are λ1 ≥ 0, . . . , λ2n ≥ 0 such that

sup
2n
∑

i=1

λiHi(Ei − p
i
)−H(E − µ) < 0 (9)

where the supremum is done over all atoms inside
H0∪H and upper-case letters represent the indicator
functions of corresponding events.

For the upper bound p, we need to compute as before
the lower bound pc for Ec|H, so that p = 1 − pc is
easily obtained.

Anyhow, in this approach a simultaneous considera-
tion of all the atoms is needed, with all the complexity
problems this implies. In [1], in the similar context
of g-coherence for imprecise probabilities, it is shown
how to simplify the procedure using linear properties
of the gain. On the contrary we will proceed in a
different direction.

Finally, since the solutions of the systems ˜Li are also
solutions of the systems in Li (in fact they just fulfill
the additional constraint (6) until the level ᾱi) they
can be used to characterize the conditional probabil-
ities P ∈ P.

Anyway, note that whenever in PE there is some pre-
cise assessment (i.e. k > 0), all probability distri-
butions P l

αi
actually “strictly” fulfill the constraints

associated to them, i.e. for i = 1, . . . , k and for
l = 1, . . . , 2n

P l
αi

(EiHi) = piP l
αi

(Hi) (10)

(recall that for i ∈ {1, . . . , k} we have p
i
= pi = pi).

Hence the linear systems Li
αi

as shown in (5) can be
modified imposing the strict equality constraint also
for all conditional events Ej |Hj with j ∈ {1, . . . , k}
and not only for Ei|Hi. In this way, all the systems
Li

αi
would be exactly the same for i = 1, . . . , k, so

that the number of sequences strictly needed is just
1 + 2(n− k) instead of 2n.

For this reason we return to the initial notation for
the assessment domain E = {E1|H1, . . . , En|Hn} and
PE will denote a “mixed” assessment on it with k ≥ 0
precise values. About the sequences of linear systems,
˜L1 will be the sequence associated to E1|H1 together
with all conditional events with a precise assessment
(if there are), while the other ˜Ll’s will have an index
that immediately refer to the “leading” conditional



event for that sequence (i.e. in ˜Lj a strict equality
constraint will be associated to Ej |Hj while in ˜Ljc it
will be done for Ec

j |Hj , with j = k + 1, . . . , n).

3 Locally strong coherence

As it has been described in Section 2, the steps to ob-
tain the class P present a not negligible computational
problem due to the exponential number of atoms AE .
Anyhow a simplification is possible.

Because of the possibility of giving zero probabilities
to conditioning events (one of the main characteristics
of de Finetti’s approach) each linear system Li

αi
can

be simplified (following Coletti and Scozzafava’s hints
in [8]) looking for constraints trivially satisfied as 0 =
0. In this way the number of actual inequalities (or
equality) to fulfill in each single linear system Li

αi
is

reduced.

Note that conditioning events with zero probabilities
are not “pathological” cases but can naturally arise
in very simple situations (see the examples reported
in [6]) also when the entire conditional assessment PE
is strictly positive. Hence a sound methodology must
include such a feature which, as we will see, can be
suitably used (or “exploited” as said in [8]) to compu-
tationally simplify the entire procedure. So we will in-
troduce “conditioning events with zero probabilities”
even when they are not “strictly” needed, because
they turn out to be helpful (all our results are based
on this “positive drawback” of the zeroes).

To achieve a simplification it is necessary to “drive
in the good direction” the zeroes. As already done
for precise conditional probabilities in [3, 5] and for
lower conditional probabilities in [4], this is possible
thanks to the notion of locally strong coherence that
will actually avoid to build (and solve) at least some
of the first systems in the ˜Li’s, or possibly some entire
sequence ˜Li.

To better understand our results we report the formal
definitions of strong and locally strong coherence as
already introduced in the quoted papers and adapted
to our “mixed” assessment PE (anyhow the quoted
papers remain the reference for a fully detailed expo-
sition of this subject).

Strong coherence can be referred to any unconditional
event:

Definition 1 Let B be an unconditional event, A|BE
the set of atoms Ar ∈ AE such that ArB 6= ∅, and PE
an assessment such that the first k evaluations are
precise. Then, PE is strong coherent with respect to
B if and only if HiB 6= ∅ for i = 1, . . . , n and the

probability assessment P ′ defined as

P ′(Ei|HiB) =

8>>><>>>:
pj if ∃j ≤ k s.t. Ei|Hi ≡ Ej |Hj

p
j

if ∃j > k s.t. Ei|Hi ≡ Ej |Hj

1− pj if ∃j > k s.t. Ei|Hi ≡ Ec
j |Hj

and such that P ′(HiB) > 0, for i = 1, . . . , n, is co-
herent.

Note that assumption HiB 6= ∅ assures that the con-
ditional events Ei|HiB are well defined.

Such notion can be suitably used with the purpose to
force a sub-group of conditional events to stay in a
common layer (so that the application is “localized”
to such sub-group).

Let G be a subfamily of E , R = E \ G the residual
and let us make a particular choice for the event B
appearing in Definition 1

B =





∨

i: Ei|Hi∈R

Hi





c

=
∧

i: Ei|Hi∈R

Hc
i . (11)

Let PG be the restriction of PE to G. If PG is strong
coherent with respect to such B, then there exists an
unconditional probability P0 defined on A|BG such that
P0(HiB) > 0 for all Ei|Hi ∈ G and

pi =
P0(EiHiB)
P0(HiB)

if i ≤ k

p
i
≤ P0(EiHiB)

P0(HiB)
if i > k

1− pi ≤ P0(Ec
i HiB)

P0(HiB)
if i > k

It is immediate now to extend P0 on AE by impos-
ing P0(Ar) = 0 for all Ar ∈ AE \ A|BG , and so, by
additivity, P0(Hj) = 0 for all Ej |Hj ∈ R.

From this we can the state the following.

Definition 2 Let PE be a “mixed” conditional prob-
ability and G ⊆ E. If PG is strong coherent with
respect to the event B =

∧

i: Ei|Hi∈R

Hc
i , then PE is

locally strong coherent on G.

Proposition 1 Let PG be the restriction of PE to
G ⊆ E and PR the restriction of PE to R = E \ G. If
PE is locally strong coherent on G then

PE is coherent ⇔ PR is coherent.



Note that for extension purposes on E|H (i.e. when
also (6) must holds) it is enough to choose an event B
(and so G) such that it does not influence (i.e. shares
atoms with) H. By Proposition 1, whenever locally
strong coherence is detected on such G, neither the
coherence of PE nor the extension of the assessment to
E|H are actually influenced by the subfamily, so that
G can be “neglected” focusing attention only on the
restR = E\G. Obviously the property can be iterated
reducing, as much as possible, the initial domain and
so the number of atoms to compute (that can be 0).

Once again, by Theorem 1 it would be possible to
operationally check the locally strong coherence by
solving a linear system. Anyhow this will not help the
complexity reduction because we will continue to have
an exponential number of unknowns. On the other
hand, we will see that whenever the cardinality of G is
small and some configuration among its components is
allowed, the use of this linear system can be skipped,
with all the benefits this brings.

The computational simplification depends on the ca-
pability to detect under which conditions the con-
straints associated to G in the Li

αi
’s are surely solved

“properly” (i.e. not as 0 = 0). This is possible sin-
gling out configurations that guarantee (i.e. imply)
the existence of a non trivial solution only for events
in G and null for all the others. Therefore, referring to
the linear systems , it is like to solve the systems Li

αi
’s

in (6) with less unknowns. Without entering into de-
tails, we can say that the cited particular configura-
tions among conditional events in G are expressed by
the compatibility of some specific combination among
the events (logical sum of atoms in AE). In such cases
it is useless to actually build and solve the systems be-
cause a simple solution is always obtainable, and so
it is enough to test the satisfiability of that configu-
rations.

Satisfiability will depend on the particular logical re-
lations C among the unconditional parts UE , so that
C has also in this case a relevant role on the assess-
ment (in the previous approach it determines the set
of atoms AE). Note that when C is empty (i.e. when
all the events are logically independent), any config-
uration is trivially satisfied. In this situation it is
possible to choose as G one conditional event Ei|Hi

(or a pair {Ei|Hi, Ec
i |Hi}) and iterate this procedure.

At the end all the elements of E can be eliminated,
obtaining that PE is surely coherent (if, obviously, all
its values are in [0, 1]).

For precise assessments the reductions are “perma-
nent” (since there is actually only one sequence ˜L),
while for conditional lower probabilities we can adjoin
configurations that “influence” only some branches of

the procedure (i.e. only some sequence ˜Lj or parts of
them). In the last situation, applicability of locally
strong coherence of PE on G must also mention on
which sequences it will be.

From the previous consideration, we can state that it
is absolutely equivalent to solve linear systems like (5)
(used just to check coherence), or (5) + (6) (used to
check and extend), and to verify the satisfiability of
the logical conditions.

Hence, for each conditional event Ej |Hj a sequence
˜Lj of sets of constraints can be considered and, for
the equivalence stated before, they can actually be
fulfilled either by a set of logical configurations or
by solution of linear systems. To each set of con-
straints, identified by an index αj , a subset of condi-
tional events Rj

αj
⊆ E is associated.

Fixing Ej |Hj , each set of constraints is used to search
for a precise probability P such that

P (EjHj) = p
j

P (Hj) if Ej |Hj ∈ Rj
αj

P (EiHi) = pi P (Hi) ∀Ei|Hi ∈ Rj
αj

with i ∈ {1, . . . , k} (12)

P (ElHl) ≥ p
l
P (Hl) ∀El|Hl ∈ Rj

αj

with l ∈ {k + 1, . . . , n}
P (Ec

l Hl) ≥ (1− pl) P (Hl) and l 6= j

Obviously, changing the reference event to Ej′ |Hj′ ,
the first strict equality constraint in (12) will be
shifted to the index j′.

In particular, we denote by ˜Li
αi

those configurations
or systems to reach the “deepest” layer for H (i.e.
when the explicit or implicit constraint (6) is added)
and by Li

αi
those to check the coherence on the events

Ri
αi

, with αi = 0, . . . , ωi.

As already noted, for each sequence, there will be a
layer αi where the extreme values for P (E|H) are
computed. Such computation is trivial when the layer
αi is reached just by logical conditions (in this situa-
tion Ri

αi
= ∅ and hence extreme values are 0 and 1),

otherwise it requires a linear programming optimiza-
tion. So in general, for each sequence ˜Li there are
γ̃i sets of constraints ˜Li

0, . . . , ˜Li
γ̃i

fulfilled by logical
configurations, followed by sets ˜Li

γ̃i+1, . . . , ˜Li
αi−1, L

i
αi

of linear systems. If, eventually, Ri
αi+1 6= ∅ other

logical configurations Li
αi+1, . . . , L

i
γi

and other linear
systems Li

γi+1, . . . , L
i
ωi

are needed just to check co-
herence. Note that 0 ≤ γ̃i ≤ αi, αi + 1 ≤ γi ≤ ωi

where lower bounds represent computational worst
cases, while upper bounds are the best situations (no
linear system is needed).

Our procedure build and solve the first sequence ˜L1.



At the same time, when each single constraint is not
trivially satisfied (i.e. it does not reduce to 0 = 0),
the procedure records if it is fulfilled as an equality
or as a strict inequality. This is operationally done
introducing variables ν1

j and ν1
jc for Ej |Hj and Ec

j |Hj ,
respectively. In the sequel we will denote by jε indexes
that can be both j and jc.

To each ν1
jε will be assigned the string “=” if the par-

ticular solution in ˜L1 fulfills the constraint in (12)
associated to Eε

l |Hl as an equality, the string “>” oth-
erwise. This will be useful in the other sequences ˜Ljε ,
j = k + 1, . . . , n, because the ν1

jε ’s show if solutions
of the first sequence can be compatible with solutions
of other sequences. In particular, if the constraints in
˜Ljε

αjε or in Ljε

αjε agree with ν1
lε for all Eε

l |Hl ∈ Rjε

αjε ,
the constraints can be not tested and Rj

αjε can be
neglected.

The sequence ˜L1 is taken as a reference point because,
in it, solutions for all the layers are actually detected
and they could be taken as potential solutions of some
other ˜Llε , l ∈ {k + 1, . . . , n}.

To better describe how the procedure works, we intro-
duce the further notation: let Iα1 be the set of indexes
of the events in R1

α1
. In this way we can associate to

each conditional event Eε
j |Hj the set of indexes Iβjε

with

βjε = max
α1∈{0,1,...,ω1}

{α1 : jε ∈ Iα1}.

So βjε represents the deepest layer reached by Eε
j |Hj

in the first sequence.

Relating to the previous notation, when βjε < α1

the conditional event Eε
j |Hj reaches a layer less deep

than that of E|H, so the probability of Eε
j |Hj is not

a constraint for the inference step. This implies that
the constraint associated to Eε

j |Hj appears only in
˜L1

0, . . . , ˜L1
βjε . On the other hand, if βjε ≡ α1 then

Eε
j |Hj contributes to the computation of the extreme

values for P (E|H), but it does not influence the co-
herence on the residual events R1

α1+1. Eventually,
when βjε > α1, the event Eε

j |Hj is relevant for both
inference on E|H and check of coherence on R1

α1+1.

We can now simplify the other sequences ˜Ljε , j =
k + 1, . . . , n. In fact, when ν1

jε turns out to be “=”,
for any value of βjε the sequence ˜Ljε can be reduced
just to compute the extreme values for P (E|H) un-
der the constraints Ljε

αjε (note that Iαjε = Iα1 but

Ljε

αjε 6= L1
α1

because constraints must respect the rules
in (12)). On the other hand, when ν1

jε is equal to
“>”, if βjε < α1 then ˜Ljε ≡ {˜Ljε

βjε , . . . , L
jε

ωjε }, while if

βjε ≥ α1 then ˜Ljε ≡ {Ljε

αjε , . . . , L
jε

ωjε }.

Of course, whenever βjε = 0 and ν1
jε = “ > ” we will

have a fictitious reduction, while when βjε = ωjε (and
ν1

jε = “ > ”) only the last set of constraints must be
built and solve.

4 Further elimination conditions

As already mentioned, it is possible to detect par-
ticular configurations among events of G ⊆ E that
guarantee the solvability of specific linear systems.

In [3, 4, 5], it has been done proposing explicit con-
figurations for precise and lower assessments. The
conditions are classified according to the cardinality
of G and they are detected testing the satisfiability
in G (endowed with PG and C) of particular logi-
cal (and numerical) properties. We do not report
them again because we prefer to focus attention on
further conditions suitable for “twin” pairs of events
(

Ej |Hj , Ec
j |Hj

)

, j ∈ {k + 1, . . . , n}. In fact, having
the same conditioning event Hj they must be elimi-
nated simultaneously (i.e. in the same layer). Such
peculiarity leads us to refine the conditions in [4] that
works for more general subfamilies. This specification
is not a merely formal refinement, but it is useful from
a computational point of view, because it shrinks the
search-space to set of twin pairs avoiding the proce-
dure to make an exhaustive search. In this way there
is a sensible reduction in time-complexity.

We introduce now the explicit conditions for single
or double pairs, denoted with Ci and Cij respec-
tively. For the stated relevance of the first sequence
˜L1, we also give the corresponding elimination signs
expressed by the vectors νCi and νCij .

To eliminate a pair Ci = (Ei|Hi, Ec
i |Hi) the following

rules can be applied:

i) we can differentiate two cases by the numerical
value of p

i

i1) if p
i

= 0 and Ec
i Hi

∧

l 6=i

Hc
l 6= ∅ then PE is

locally strong coherent on Ci for all po-
tential sequences ˜Lk and, in particular,
if pi < 1 then ν1

Ci
≡ (=, >),

otherwise ν1
Ci
≡ (=,=);

i2) whenever p
i

> 0 and both EiHi

∧

l 6=i

Hc
l and

Ec
i Hi

∧

l 6=i

Hc
l are possible then PE is locally

strong coherent on Ci for all potential se-
quences ˜Lk and, in particular, ν1

Ci
≡ (=, =).

For two pairs Cij =
(

Ei|Hi, Ec
i |Hi, Ej |Hj , Ec

j |Hj
)

we
can detect more “sophisticated” configurations (in



these cases the sign string ν1
Cij

will have components
(

ν1
i , ν1

ic , ν1
j , ν1

jc

)

):

ii) when p
i

= p
j

= 0 and Ec
i HiEc

jHj

∧

l 6=i,j

Hc
l 6= ∅

then PE is locally strong coherent on Cij for the
potential sequences ˜Lk with k 6= ic, jc, so that we
will surely have ν1

Cij
≡ (=, >, =, >).

Anyhow some further specification can be done
to obtain better signs (remember that whenever
ν1

k ≡ “ = ” we have a simplification on the com-
putation):

ii1) if also EiHiEc
jHj

∧

l 6=i,j

Hc
l 6= ∅

and Ec
i HiEjHj

∧

l 6=i,j

Hc
l 6= ∅ hold,

then ν1
Cij

≡ (=, =, =, =);

ii2) if, until valid the logical condition in
ii), only EiHiEc

jHj

∧

l 6=i,j

Hc
l 6= ∅ holds,

then ν1
Cij

≡ (=,=, =, >);

ii3) otherwise, if pi < pj and

EiHi ∧ (EjHj ∨ Ec
jHj ∨Hc

j )
∧

l 6=i,j

Hc
l =

= EiHi

∧

l 6=i,j

Hc
l 6= ∅,

then ν1
Cij

≡ (=, =, =, >);

iii) if p
i
or p

j
(or both) is (are) different from 0, then

we can distinguish four situations:

iii1) whenever pi = pj = 1 and

EiHiEjHj

∧

l 6=i,j

Hc
l 6= ∅,

then PE is locally strong coherent on Cij for
the potential sequences ˜Lk with k 6= i, j, so
that ν1

Cij
≡ (>,=, >, =) if i, j 6= 1;

iii2) whenever max{p
i
, p

j
} ≤ min{pi, pj} and



















EiHiEjHj

∧

l 6=i,j

Hc
l 6= ∅

Ec
i HiEc

jHj

∧

l 6=i,j

Hc
l 6= ∅

,

denoting with m and n the indexes s.t.
p

m
= max{p

i
, p

j
} and pn = min{pi, pj}, re-

spectively, then PE is locally strong coherent
on Cij for the potential sequences ˜Lk with

k 6= mc, n and so

ν1
Cij

≡































(=, =, >, >) if m = n = i and j 6= 1

(>,>, =, =) if m = n = j and i 6= 1

(=, >, >, =) if m = i, n = j and j 6= 1

(>,=,=, >) if m = j, n = i and i 6= 1

iii3) if


































EiHiEjHj

∧

l 6=i,j

Hc
l 6= ∅

Ec
i Hi

∧

l 6=i,j

Hc
l 6= ∅

Ec
jHj

∧

l 6=i,j

Hc
l 6= ∅

then PE is locally strong coherent on Cij

for all the potential sequences ˜Lk and so
ν1

Cij
≡ (=, =,=, =);

iii4) if


































Ec
i HiEc

jHj

∧

l 6=i,j

Hc
l 6= ∅

EiHi

∧

l 6=i,j

Hc
l 6= ∅

EjHj

∧

l 6=i,j

Hc
l 6= ∅

then PE is locally strong coherent on Cij

for all the potential sequences ˜Lk and so
ν1

Cij
≡ (=, =, =, =).

The previous conditions can be combined with those
for precise assessments, obtaining conditions to elim-
inate “mixed” subfamilies (i.e. composed by events
with precise probabilities and twin pairs). In par-
ticular, when precise assessments associated to some
Ei0 |Hi0 are 0 and those to Ej1 |Hj1 are 1, it suffices to
modify all the logical expressions in i)–iii) replacing
Hc

i0 by Ec
i0Hi0 and Hc

j1 by Ej1Hj1 , respectively.

The entire “machinery” allows to perform inference
obtaining “exact” results (i.e. the interval values [p, p]
are the same we would obtain by directly solving all
the linear systems ˜Li

αi
) because the logical conditions

do not require any heuristic. Actually, avoiding to
build and solve huge linear systems, heavy round nu-
merical errors are also skipped.

On the other hand, our procedure could be improved
combining it with other techniques based on the linear
structure of the random gain in the betting criterion,
similarly to those presented for imprecise probabilities
in [1]. Other benefits would be brought applying nu-
merical techniques (like the column generation [16])
when we cannot avoid to use linear programming.



5 A practical application to a
diagnostic problem

We present how our procedure works in a medical di-
agnosis. We consider a problem about thyroid pathol-
ogy where the different hypotheses suggested by the
physician are:

• morphological pathology DM ;

• nodular pathology (comprehending both benign
(adenomas) and malignant (carcinomas)) DN ;

• functional pathology (hyper and hypothy-
roidism) DF ;

• compression or deviation of surrounding struc-
tures (specially of the trachea) DH ;

• absence of thyroid pathology DA.

These hypotheses are endowed with the following log-
ical constraints

C = {DH ⊂ DM ∨DN ; DA ⊂ Dc
M ∧Dc

N ∧Dc
F }.

Note that the five hypotheses do not cover all the
possible thyroid pathology, but just those relevant
to a physician when he has to perform a diagnosis
on a patient with a set of symptoms like “arrhyth-
mia, palpitations, nervousness, anxiety, weight loss
and dysphony”. First of all, the physician looks at the
possible ultrasound results: normal glandular volume
En, high glandular volume Ea or tracheal compression
and/or deviation Ec. Obviously these results form a
partition, while the logical relations among pathology
and ultrasound results are

Ea ⊂ DM Ec ⊂ DH DA ⊂ En.

From the physician’s data-set2 the following values
are assessed

P (En|DM ) = 0

P (Ec|DMDNDHDF ) = 1

P (Ea|DM ) = 13
14 P (Ea|DM ) = 1

P (En|DN ) = 2
11 P (En|DN ) = 1

P (En|DMDN ) = 1
27 P (En|DMDN ) = 218

243

P (Ea|DMDNDH) = 0 P (Ea|DMDNDH) = 2
5

P (Ec|DMDNDH) = 3
5 P (Ec|DMDNDH) = 1

P (Ea|DMDNDF ) = 5
38 P (Ea|DMDNDF ) = 1.

2The values derive from 377 clinical cases observed by Ital-
ian Hospital “Unità Operativa di Endocrinologia del Policlinico
dell’Università di Chieti” during years ’97-’98.

It can be proved (applying the procedure) that “prior”
evaluations lying in [0, 1] on all pathology are coher-
ent with this assessment. The physician is looking for
the probability that a patient is suffering of both mor-
phological and nodule pathology supposing he has an
high glandular volume (i.e. to perform inference on
DMDN |Ea).

Applying the classical procedure, based on solving se-
quences of linear optimization programs, we would
need a lot of computations: 16 sequences, 4 from the
two precise assessments transformed in lower and 12
from the other interval evaluations. Each sequence
would start with a system of 16 unknowns and 16
inequalities.

On the other hand, our procedure eliminates in the
first sequence the twin evaluation on En|DN by condi-
tion i1) applied to the inverted pair (Ec

n|DN , En|DN ).
At the second step, it is not anymore possible to im-
pose P (Ea) = 0, so the procedure finds the minimum
and the maximum values for DMDN |Ea, both being
0 in this sequence. Moreover, the upper bound can-
not be increased in any other sequence. Computing
these bounds the procedure find a solution that gives
positive probability to the conditioning event DM , so
that {En|DM , Ea|DM , Ec

a|DM} do not pass to the
next layer. Then, only for the purpose of checking
coherence, the following elimination sequence is de-
tected:

• {En|DMDN , Ec
n|DMDN , } by condition i2);

• {Ea|DMDNDH , Ec
a|DMDNDH , Ec|DMDNDH ,

Ec
c |DMDNDH} by condition ii4);

• {Ec
a|DMDNDF , Ea|DMDNDF } by condition

i1);

• {Ec|DMDNDHDF } by elimination condition for
precise values.

The same sequence is useful for all the other sequences
and hence we use linear programming techniques only
for the computations of the bounds.

Since the coherent value for P (DMDN |Ea) is 0, the
physician will disbelieve on the combined disease
DMDN for a patient with, apart from the initial
symptoms, an augmented thyroid volume.

Anyhow, the physician has information about further
cases not well reported (i.e. with some missing data).
He could enlarge his data-set with this cases obtaining
a change of the following likelihood values:

P (En|DM ) = 0.02 and P (Ea|DM ) = 0.98

(while all the other remain as before). Performing
the same inference on DMDN |Ea the “elimination se-



quence” remains exactly the same, while the new co-
herent interval will be [0, 0.56] (attained again on the
first sequence). This time a mild confidence on the
combined disease will support future decisions.
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