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Abstract

In the wish list of the characteristics of a classi-
fier, there are a reliable approach to small data sets
and a clear and robust treatment of incomplete sam-
ples. This paper copes with such difficult problems by
adopting the paradigm of credal classification. By ex-
ploiting Walley’s imprecise Dirichlet model, it defines
how to infer the naive credal classifier from a possibly
incomplete multinomial sample. The derived proce-
dure is exact and linear in the number of attributes.
The obtained classifier is robust to small data sets
and to all the possible missingness mechanisms. The
results of some experimental analyses that compare
the naive credal classifier with naive Bayesian models
support the presented approach.

1 Introduction

Classification (also known as pattern recognition,
identification, or selection) is a multivariate technique
concerned with allocating new objects to previously
defined groups on the basis of observations on several
characteristics of the objects [4]. Formally, a classi-
fier is a function that maps an instance of a set of
variables, called attributes or features, to a state of a
categorical class variable. The range of application of
classifiers is wide and comprises, among others, pat-
tern recognition, prediction and diagnosis.

The naive credal classifier (NCC) [21, 23] is the ex-
tension of the naive Bayes classifier (NBC) [3] to sets
of probability distributions (or credal sets [13]). The
NCC is an example of a credal classifier: this is a
function that maps an instance of a set of features to
a set of states of a categorical class variable. A credal
classifier enables imprecision to be taken into account,
as generated by unobserved or rare events, small sam-
ple sizes and missing data. As a consequence, for a
given pattern of the attributes, imprecision in the in-
put may prevent a single output class from being ob-
tained; then the result of a credal classifier is a set of

classes, all of which are candidates to be the correct
category. In other words, a credal classifier recognizes
that the available knowledge may not suffice to isolate
a single class and thus gives rise to a set of alterna-
tives.

In this paper I cope with the statistical inference of the
NCC from a possibly incomplete multinomial sample.
I initially exploit Walley’s imprecise Dirichlet model
(IDM) [20] to derive the expressions defining the NCC
as inferred from a complete sample, in Sect. 2. This
is firstly made by imposing the assumption of proba-
bilistic independence of the attributes conditional on
the class that is central both to the NBC and the
NCC. Secondly, the choice of the class of prior densi-
ties characterizing the IDM completes the definition
of the NCC. This derivation is an original develop-
ment that improves upon an early proposal to infer
the NCC from a complete sample [21]. This proposal
defined the NCC by means of a set of joint distri-
butions that properly encompasses the set proposed
in this paper: the past set was, in other words, less
precise. Greater precision is obtained here by implic-
itly relaxing the assumption made in the past work
of dealing with logically independent credal sets (also
known as separately specified credal sets [19]).

The focus of the paper is then moved to incomplete
samples. By regarding an incomplete sample as a col-
lection of complete samples [22], T extend the above
expressions to the case of missing data in Sect. 2.5.1.
The classifier inferred in this way is robust to all the
possible replacements of missing data with admissible
values. To the best of my knowledge, only another
classifier has an analogous characteristic [18], though
it cannot be considered a credal classifier as it is, since
it does not output sets of classes (also, it neglects the
imprecision due to the prior uncertainty on the multi-
nomial model). The problem of missing data is widely
recognized as one of the most critical and important
topics in the field of classification [1]; the approach
proposed here seems a significant step towards the



proper treatment of this problem.

It is also important to emphasize that the presented
approach to inference does not involve approxima-
tions. Nevertheless, both the computational complex-
ity of inferring the classifier and that of doing a clas-
sification are linear in the number of attributes, as
shown in Sect. 4.

The proposed method of inference is discussed by
means of some experimental analyses on real and ar-
tificial data sets. These permit to introduce the prob-
lem of the experimental evaluation of a credal classi-
fier that is not a straightforward extension of the case
of standard classifiers. Furthermore, the experiments,
reported in Sect. 5, point to some counter-intuitive
situations that are interpreted in Sect. 6.

2 Inferring the NCC by the IDM

This paper infers the NCC by exploiting Walley’s im-
precise Dirichlet model [20]. The IDM models prior
ignorance about the chances of the multinomial dis-
tribution by a set of Dirichlet distributions and makes
posterior inferences by combining this set with the
observed likelihood function. In the following subsec-
tions I consider a complete random sample.

2.1 Notation and basic assumption

Let us denote the classification variable by C', taking
values in the finite set C, where the possible classes are
denoted by lower-case letters. We measure k features
(Ay,...,Ar) taking generic values (aq,...,ar) = a
from the sets Ay, ..., Ak, which are assumed to be
finite.

Let the unknown chances of the multinomial distribu-
tion be denoted by 0. a ((c,a) € CxA; x--- X Ag). De-
note by 0, the chance that A; = a; conditional on
c; similarly, let 0, be the chance that (Ay,..., Ax) =
(a1, ...,ar) conditional on c.

Let N be the total number of observed units, each
with known values of the attributes and the class.
The units are assumed to be generated independently
from the multinomial process. Let n(c) and n(a; |c)
be the observed frequencies of class ¢ and of (a;|c) in
the N observations, respectively. We have the struc-
tural constraints: 0 < n(a;|c) < n(c) for all ¢ and
(aile); Yo.n(e) = Njand >, 4 n(a;|ec) = n(c) for
all ¢ and i. t(c) and t(a; |c) are used to denote the

corresponding values of the t-hyperparameters in the
IDM.

Let n denote the vector of all the above frequencies, t
the corresponding vector of all the ¢t-hyperparameters
and 0 be the vector whose elements are the chances

Oca ((c;a) €C X Ag -+ x Ag).

Both the naive Bayes classifier and the naive credal
classifier are based on the assumption of probabilistic
independence of the attributes conditional on the class
(this assumption is widely discussed in literature [2,

6]):
k
0 c — Hea‘;\c
i=1

Inferring the NCC means to determine a set of joint
distributions from data, each satisfying the mutual in-
dependence of the attributes conditional on the class.

V(c,a) e Cx Ay X -+ x Ag. (1)

2.2 Likelihood function

Under assumption (1), the chance 6., that a unit
will have values (c,a) can be expressed as a product
of theta-parameters:

k
o=0, Hea”c. (2)
=1

Hence, after observing data n, the likelihood func-
tion for the problem can be expressed as a product of
powers of the theta-parameters:

L(On) O(H 0”(0 H H Zl(lacL‘

ceC i=la;EA;
2.3 Definition of the IDM

The prior densities in the IDM class are proportional
to an expression that is similar to the likelihood func-
tion, except that frequencies n(-) are replaced every-
where by st(-) — 1, where s > 0 is a fixed constant
and t(-) is the hyperparameter that corresponds to
frequency n(-), i.e.,

o)« I |ox~ T T oz

ceC i=1la;EA;

This is a product of Dirichlet prior densities. If we
take the prior class to consist of densities of this type,
we can get different classes by imposing different con-
straints on the hyperparameters t. I will use the fol-
lowing constraints:

Zt(c) =1 (3)

c

> tlaile) =t(e) V(o) (4)
a;€A;
t(a;|c) >0 Y(i,as,c). (5)

These constraints correspond exactly to the struc-
tural constraints that are satisfied by the observed



frequencies n and this is natural because st(-) plays
essentially the same role in the prior densities as n(-)
does in the likelihood function. Define the imprecise
Dirichlet model to be the set of all prior densities
of the above (product-Dirichlet) form, where s is a
fixed positive number and t satisfies the preceding
constraints. Note that the acronym IDM is used in
this paper to refer to the model defined here and not
to Walley’s original definition [20].

By multiplying the prior density and the likelihood
function, we obtain a posterior density of the same
form as the prior, with st(-) replaced by st(-) + n(-).
Thus the posterior density for the theta-parameters is
a product of independent Dirichlet densities.

2.4 Basic formulae

Let us focus on the computation of the expectation of
0.,a With respect to the posterior density for the theta
parameters. This is denoted by E[f.a|n,t]. From
(2) and the posterior independence of all the theta-
parameters that appear there, each of which has a
posterior beta distribution, it is easily shown that:

k

P(cln,t) [] P(aile,n, t),

i=1

(6)
where P(cn,t) = E[f:|n,t] = [n(c) + st(c)]/[N +
s| and P(agle,n,t) = Elfq,cn,t] = [n(a;lc) +
st(a; |c)]/[n(c) + st(c)]. Here P(-|n,t) denotes epis-
temic posterior probability and E(-|n,t) denotes epis-
temic posterior expectation, with respect to the
product-Dirichlet prior distribution with hyperpa-
rameters t, after observing frequencies n. These ex-
pressions are exact—no approximations are involved.

Ef.an,t] = P(c,ajn,t) =

2.5 Checking for preference (credal
dominance)

First note that if the attribute vector a is fixed, as it
is for the inferences below, then the only constraints
ontare: 0 < t(a;|c) < t(c) for all values of (i, c), and
> .t(c) = 1. Now consider the problem of predicting
the class of a new unit whose attribute values a are
known. Let E[U(c)|a, n, t] denote the expected utility
from choosing class ¢, given a, the previous data n
and a vector t of hyperparameters. I consider 0-1
valued utility functions, i.e., we receive utility 1 if we
choose the correct class ¢ and 0 if we do not, so that
E[U(c)|la,n,t] = P(cla,n,t).

We say that class ¢’ is preferred to class ¢ (or that ¢/
credal-dominates ¢”) if and only if E[U(c/)|a,n,t] >
E[U(c")|a,n,t] for all values of t in the IDM, which
holds if and only if P(c|a,n,t) > P(c’|a,n,t) for
all values of t in the IDM, which holds if and only

if P(cd,ajn,t) > P(¢",aln,t) for all values of t in
the IDM. The last step is based on the fact that
P(c,aln,t) > 0 and hence P(aln,t) > 0, for all ¢
in the IDM. To check whether ¢’ is preferred to ¢”, it
then suffices to solve the following optimization prob-
lem:

P(d,aln,t)
nf P(c”,a|n,t) ™
D o) =1 (8)

c

0 <t(a;le) <tlc) V(ic) (9)

and to compare the result with 1 [21]. Recall that
P(c,aln,t) is given by (6). The criterion of credal
dominance reported here is a special case of strict
preference as defined by Walley ([19], Sect. 3.7.7).

2.5.1 Solution of the optimization problem

Problem (7) with constraints (8) and (9) can be
rewritten as

e[ [l st(en)] "y nlaild) + stla|)
' { { n(@) + () ] 1 e+ stta 1) }

0 <t(asle) <t(e) V(ic),

after using (6) in the objective function (i.e., the func-
tion to optimize) and after some algebraic manip-
ulation. It is possible to immediately observe that
the infimum of the problem is obtained when each
t(a;|c') — 0 and each t(a;|¢”) — t(¢"), so these val-
ues are used into the objective function. Also, the con-
straint ) _t(c) = 1 can be replaced by t(c¢') +t(c”) =
1, since this is the only possibility at the infimum.
Suppose it is not, i.e. t(¢)+t(¢”) < 1. Then we might
hold t(¢””) fixed and increase t(¢’) up to 1 — t(c"), so
decreasing the infimum. By these considerations, the
new form of the optimization problem becomes:

n(c”) +st(c¢")]*! n(ai|c')
ll’lf { |: (Cl t( ) :| 1:[ n(ai ‘CU) _|_ St(c”) }(10)

) +
) +
) +uc") =1 (11)
t(¢'), ¢(¢") > 0. (12)

The cases when n(a; |¢') = 0 for some i can be treated
separately: in such conditions, for any value of #(c)
and t(c”
(it is minimum because the function is non negative).
We can thus assume for the subsequent derivation
that n(a; |¢’) > 0 for each ¢. Furthermore, let us also
consider k£ > 1 in the rest of the paper, since the case
k = 0 can be solved trivially.

) the function attains the minimum value zero



The problem is rewritten by using the following no-
tations, for short: a; = n(a;|d),8; = n(a;|d’),a =
n(c'), 8 =n(c") and = = st(c”). It becomes:

inf h(z) = inf { [%} . H @O‘i - } (13)

O<a<s. (14)

The objective function is always positive over the do-
main, so we can compute the logarithmic derivative

of h(x):

dlnh(z) k-1 k—1
de  fB+=z

Another differentiation leads to:

dzlnf(x)ii k-1 k-1 1
d? (ﬁ+x)2+(a+sfx)2+z

This is always positive. In fact (‘Biim)z > @ _:r)z,

because 8; < (3 and then >, m >3, m =

ko k=1 '
(B+2)* 7 (B+x)*”
has a single infimum. By applying the exponential
function we have that also h(-) is convex and admits

a single point of infimum over the open interval (0, s).

It follows that Inh(-) is convex and

Let us now consider the behavior of h(x) when z —
0. h(0) is not defined if there exists ¢ such that
n(a;|d") = B; = 0. However, being h(z) convex in
the open interval implies that it tends to +0co when
z — 0 and so the minimum must be in (0, s]. We also
know that —oo is the limit of the logarithmic deriva-
tive when « — 0. This is used below, where, on the
basis of the above considerations, I describe a simple
algorithm for computing the infimum.

1. If there exists ¢ such that n(a;|c’) = 0, let
inf h(z) = 0. Stop.

2. If there exists ¢ such that n(a;|c”) = 0, let
(In ~(0))" = —o0, else compute (Inh(0)).

Compute (Inh(s))’.
If (In h(0)

"> 0, let inf h(z) = h(0). Stop.
If (Inh(s))’

)
) <0, let inf h(z) = h(s). Stop.

A

If (Inh(0))" < 0 and (Inh(s))’ > 0, approximate

the minimum numerically. Stop.

The first point is just the cited separate treatment of
the cases where n(a;|c’) = 0 for some i. The rest
of the procedure is a simple test which takes into ac-
count the values of the logarithmic derivative at the

i (B; WLI)Q.

extremes of the interval. If the function was bounded,
the points 4, 5 and 6 would obviously identify the in-
fimum. The point 2 allows this test to be extended
to the case of h(0) being infinite, by introducing the
value —oo for the derivative and by treating it homo-
geneously with the others.

As far as the numerical way to search for the min-
imum is concerned, one of the best choices seems
Newton-Raphson’s method because the first and sec-
ond derivatives are available. The method is very fast,
in very few iterations it can compute an approxi-
mation of the minimum at a very reasonable preci-
sion. The problem with the basic Newton-Raphson
algorithm can be obtaining the convergence, but this
is guaranteed when the algorithm is combined with
bracketing ([17], p. 366). Note that the limitation of
machine precision may prevent the test of credal dom-
inance to be carried out; in fact, if the minimum of
In h(-) is within machine precision from zero, it will
not be possible to determine its actual sign. It seems
reasonable to adopt a conservative approach defining
that ¢” is not credally dominated in this case (this fol-
lows naturally by treating the zero of the machine as
the actual zero). Moreover, in all the other cases, by
choosing a sufficient number of iterations, the overall
test of credal dominance will be solved exactly: when
the minimum of In h(+) is more distant than machine
precision from zero, the bracket maintained by the al-
gorithm will narrow until zero will be excluded, thus
determining the sign of the minimum exactly even if
the minimum will only be known approximately.

3 Extension to incomplete samples

I now turn to the problem of inferring the classifier
from an incomplete multinomial sample. The under-
lying assumption behind the following development is
that the incomplete sample is the result of two pro-
cesses: a multinomial sampling and a subsequent un-
known mechanism that turns some values into missing
data [22]. T also assume that the class is never missing,
as it is reasonable since classification is a supervised
learning approach by definition.

In order to make the classifier be robust to all the pos-
sible missingness mechanisms, all the complete sam-
ples that are consistent with the incomplete one are
taken into account. For each of them, the arguments
in the preceding sections apply and the test of credal
dominance can be expressed by problem (10) with
constraints (11) and (12). Then it is taken the mini-
mum of the set of infima generated when the missing
data are replaced by known values in all the possible
ways. This is obtained by a slight change in the test
of credal dominance:



+ st(d) " n(a; |c")
T(c’)] H n(a; ) + st(c") }
t(cd)+t(d) =1
t(c'),t(c") > 0.

Here n(a; |¢') and 7i(a; |¢”) denote the minimum value
of n(a;|c’) and the maximum value of n(a;|c"), re-
spectively, when all the possible replacements of miss-
ing data are considered. The form of the problem is
the same of the original problem (10) with constraints
(11) and (12), so that the solution procedure given in
Sect. 2.5.1 applies.

The naive credal classifier can then cope with missing
data without any increase in computational complex-
ity. This holds when the NCC must be inferred from
an incomplete sample, but it also holds when the NCC
must classify an incomplete instance of the attributes:
it is enough to do the test of credal dominance by con-
sidering a as the vector of the non-missing attributes
(i.e. in this case k represents the number of observed
attributes). This follows from an analogous character-
istic of the NBC and by regarding the NCC as a set
of NBCs.

4 Computational complexity

Inferring the NCC from an incomplete sample is a task
linear in the number of units. In fact, it is matter of
collecting the following set of two-way counts: n(a; |c)
and 7(a;|c) for all ¢ = 1,...,k, all ¢ € C and all
a; € A;.

The classification of an instance requires to compare
all the pairs of classes by the procedure to solve the
test of credal dominance given in Sect. 2.5.1. Such
procedure is based on the functions (Inh(-))" and
(Inh(-))", whose values, for a given argument, can
be computed in time O(k) (see [4], p. 633, for the
definition of O(+)). This is also the complexity of the
procedure if the Newton-Raphson’s numerical approx-
imation can be shown to work in constant time.

Let us analyze this point. Consider In h(-), where h(-)
is given by (13). We can start the method in the mid-
dle of the interval, x = s/2. By using 8 = N, a =0
and a; = N, B, = 0 for all i, we obtain the upper
bound Inh(s/2) < (2k — 1)In(2N/s + 1). Following
Walley’s recommendation [20] to choose s in the in-
terval [1,2], the upper bound is maximized at s = 1.
The speed of the method of Newton-Raphson guaran-
tees that even in the case of classification problems of
very large size, (2k—1) In(2N +1) can be reduced to a
very good approximation of the minimum in few iter-
ations. Consider, for instance, k¥ = 103 and N = 10,

which lead to (2k —1)In(2N 4+ 1) ~ 42811. If we used
a simple binary search that each time halves the inter-
val containing the optimum, we would at most need
log, (42811 - 10%) ~ 46 iterations to have an error as
low as 10~°. This is an upper bound on the number of
iteration of Newton-Raphson, which is in facts much
faster: near the optimum the number of significant
digits approximately doubles with each step ([17], p.
365). For all practical purposes we can therefore con-
sider the number of iterations of Newton-Raphson’s
method a constant.

By considering all the tests of credal dominance be-
tween each pair of classes, it follows that the time
required for the classification of a complete instance,
which in the worst case, is O(k|C|°).

5 Experiments

This section analyzes the behavior of the NCC on
some real and artificial data sets. Experimental anal-
yses are useful to emphasize that there is the need to
define new methods to make experiments when credal
classifiers are concerned. One such method is proposed
in the following. Experiments can further highlight be-
haviors that are peculiar of credal classifiers and that
can be unclear at first sight, so that they should be
interpreted. I discuss some of these issues in Sect. 6.

5.1 Data sets

Four data sets are considered from the repository of
the University of California at Irvine [15]: Breast,
Corral, German and LetterAB.

e Breast is a breast cancer database obtained from
the University of Wisconsin Hospitals, Madison
[14]. Tt is composed of 699 records of patients
made up by 9 continuous attributes related to
the responses of the clinical analyses and a bi-
nary class: “benign cancer” (65%), “malignant
cancer” (34.5%). 16 values are missing.

e Corral is an artificial data set [9] with 6 boolean
attributes: A0, A1, B0, B1, IR and CR. The tar-
get concept is the boolean value: (A0 and Al) or
(B0 and B1). IR is an irrelevant feature and CR
is an attribute highly associated with the class,
but with 25% error rate. There are 128 records
where the class “false” appears in 56% of cases.

e German was donated by Professor Dr. Hans
Hofmann from the Institut fiir Statistik und
Okonometrie, Universitit Hamburg. The data
set is related to the prediction of the type of Ger-
man customer (“good” or “bad”) as far as the



release of credit cards is concerned. The predic-
tion is based on the customer’s profile, defined
by 13 categorical features and 7 continuous fea-
tures. There are 1000 records, no missing values,
and the classes appear with percentages of 70%
(“good”) and 30% (“bad”).

e Letter AB is the restriction of the Letter database
to the first two classes. Letter is a set of data
for letter image recognition [5]. The objective is
to identify each of a number of black-and-white
rectangular pixel displays as letters in the English
alphabet. LetterAB is composed of 16 continuous
attributes and 1555 complete records. The two
classes are almost equally represented.

I used the discretization utility of MLC++ [11], with
default parameters, to convert the databases to sets
of categorical data, since dealing with categorical at-
tributes is an assumption of this paper. Note that
discretizing the entire data sets once for all the sub-
sequent experiments generally gives rise to a slight
optimistic bias in the evaluation of the prediction ac-
curacy. This is not problematic here since the focus
of the analysis is not on evaluating the prediction ac-
curacy on the original databases.

5.2 Bayesian models

It is important to compare the IDM inferences with
Bayesian inferences, which means to compare the
present version of the NCC with the NBC inferred
according to some Bayesian prior. The following
Bayesian models seem worthy of consideration.

e Haldane [7]: this uses a single product-Dirichlet
density with s = 0 (which is the limit of the IDM
as s — 0). It gives the very simple formulae:
P(cn,t) = n(c)/N, P(aile,n,t) = n(as|c)/n(c).
Note that the Haldane prior can give rise to un-
defined classification, due to null probabilities of
the observed instance of the attributes.

o Perks [16]: we have P(cn,t) = [n(c) +
1/ICJ/[N + 1] and P(aile,n,t) = [n(ailc) +
1/]Ail]/[n(c)+1]. By analogy with the IDM pro-
posed in Sect. 2.3, T also consider a slightly dif-
ferent model in which P(a;|c,n,t) = [n(a;|c) +
1/(|Cl1AiD)]/[n(c) + 1/|C]]. In this way, the ¢-
parameters that define the prior respect the IDM
constraint (4); and the prior is also given less
weight compared to the former definition.

e Uniform [12]: we obtain P(c|n,t) [n(c)

1]/[N + |C|]] and P(ailc,n,t) = T a;lc)
1]/[n(c) + |A]], or possibly P(as|c,n,t)

I+ +

n(ailc) + 1/]A;|]/[n(c) + 1] (again by analogy
with the IDM).

e Jeffreys [8]: P(c¢n,t) = [n(c) + 1/2]/[N +
C /2], Plaie,n,t) = [n(asle) + 1/2]/[n(c) +
|Ai| /2], or possibly P(a;|c,n,t) = [n(a;|c) +
1/(21Ai)]/In(e) + 1/2] (again by analogy with
the IDM).

5.3 Results

The experiments aim to compare the NCC with seven
versions of the NBC, based on the seven Bayesian pri-
ors described in Sect. 5.2. The comparison is princi-
pally based on the prediction accuracy, which is de-
fined as the relative number of correct guesses.

In the following, I present the results of the evaluation
of the classifiers on previously unseen sets of units. I
used the scheme called r-fold cross-validation [10]. Ac-
cording to cross-validation, a data set D is split in r
mutually exclusive subsets (the folds) Dy,..., D, of
approximately equal size. The classifier is inferred
and tested r times; each time ¢ it is inferred from
D\ D, and tested on D;. The statistics for the quan-
tities of interest, like the percentage of successful pre-
dictions (i.e. the accuracy), are collected over the r
folds. Since the variance of the statistics can be large,
especially for small samples, r-folds cross validation
is repeated, by always making random splits of the
database, until the standard deviation of the mean
measures is lower than an arbitrary threshold which
makes them be reasonably stable. I set the threshold
to 0.33%; furthermore I used r = 5.

The results of the experiments are reported in the
Tables 1-4. Each row in a table refers to a different
prior distribution for the NBC. Notice that the priors
modified by analogy with the IDM are marked with
a prime (e.g., Perks’). The tables have the following
columns.

e “Trials” is the number of repetitions of the 5-folds
cross-validation or, also, the number of times
that the entire data set was used to compute the
statistics. This number depends on the size of the
data set, on the measured percentages and on the
chosen threshold for the standard deviation (i.e.

0.33%).

o “C1%” is the accuracy of the NCC on the sub-
set of instances where there is a single dominant
class according to the NCC. That is, this column
reports the results of the NCC when a reasonable
confidence allows it to isolate a single class.

o “N%” is the accuracy of the NBC on the subset
of instances whose probability is positive. This



value should be compared with C%.

e “Ns%” is the accuracy of the NBC on the sub-
set of instances of positive probability, for which
the NCC outputs more than one class. This is
the most important measure. It is reasonable to
expect that when the NCC suspends the judg-
ment (i.e., it outputs two classes), this means
that there is not enough knowledge in the data to
do a reliable classification. So it is also reasonable
to expect that the NBC accuracy in such cases is
worse than that shown in the column N%.

o “S%” is the percentage of instances for which the
NCC outputs more than two classes.

e “U%” is the percentage of instances with zero
probability for the NBC. This value can be non
zero only when the Haldane prior is used.

Trials Ci1% N% Ns% S% U%

Haldane 701 97.05 96.83 79.67 1.32 0.94
Perks 610 97.05 96.26 61.62 2.24 0.00
Perks’ 604 97.06 96.28 62.59 2.25 0.00
Uniform 633 97.05 9593 46.82 2.24 0.00
Uniform” 610 97.05 96.26 61.62 2.24 0.00
Jeffreys 645 97.05 96.05 52.33 2.24 0.00
Jeffreys’ 604 97.06 96.28 62.59 2.25 0.00

Trials C1% N% Ns% S% U%

Haldane 7266 97.43 97.19 43.00 0.43 0.00
Perks 7354 97.43 9719 42.55 0.43 0.00
Perks’ 7372 9743 97.19 43.01 0.43 0.00
Uniform 7234 97.43 97.18 40.09 0.43 0.00
Uniform” 7004 9743 9719 42.66 0.43 0.00
Jeffreys 7278 97.43 97.18 40.94 0.43 0.00
Jeffreys’ 7372 97.43 9719 43.01 0.43 0.00

Table 1: Experimental results on the Breast data set.

Trials C1% N% Ns% S% U%

Haldane 4175 88.19 86.44 46.50 4.19 0.00
Perks 3955 88.19 86.54 48.98 4.20 0.00
Perks’ 4188 88.19 86.52 48.28 4.19 0.00
Uniform 4188 88.19 86.66 51.76 4.19 0.00
Uniform’ 4194 88.19 86.58 49.90 4.19 0.00
Jeffreys 3955 88.19 86.54 48.98 4.20 0.00
Jeffreys’ 4188 88.19 86.52 48.28 4.19 0.00

Table 2: Experimental results on the Corral data set.

Trials C1% N% Ns% S% U%

Haldane 497 76.10 75.17 55.41 4.48 0.00
Perks 498 76.10 75.14 54.74 4.48 0.00
Perks’ 497 76.10 75.16 55.09 4.48 0.00
Uniform 500 76.10 75.09 53.63 4.48 0.00
Uniform’ 498 76.10 75.14 54.65 4.48 0.00
Jeffreys 499 76.10 75.13 54.40 4.48 0.00
Jeffreys’ 497 76.10 75.16 55.09 4.48 0.00

Table 3: Experimental results on the German data
set.

Table 4: Experimental results on the LetterAB data
set.

The discussion that follows is based on the column
Ns% and on the obvious observation that when there
are two classes, predicting at 50% is equivalent to ran-
domly guessing. For all the priors, in the cases of the
Corral and the German data sets, the prediction of
the NBC where the NCC suspends the judgment is
almost equivalent to a coin tossing (750%). As far as
the Breast database, the column Ns% shows a nega-
tive departure from random guessing in all the cases.
This seems to indicate that the inner bias of every
precise-probability classifier that was considered had
a bad effect on the prediction. In the case of the
LetterAB data set, some priors exhibit a prediction
slightly different from randomly guessing: e.g. Hal-
dane’s prior (in this case the accuracy is about 80%,
but note that it is computed only on the 1.32% of
instances with positive probability, where the NCC
suspends the judgment, not on the 2.24% as in the
other cases).

It appears that the NCC is able to isolate an area
of ignorance for the databases Corral, German and
Breast, where each precise-probability classifier can-
not do reliable predictions. The results for LetterAB
are more difficult to interpret: the most important
evidence arising is that a precise-probability classi-
fier can realize significant predictions in the set of in-
stances where the NCC suspends the judgment. The
discussion about this point is demanded to Sect. 6,
which provides easy examples for such phenomenon
and their justification.

There are two further points worth highlighting.
First, for all the data sets, the accuracy in column
C1% is greater than that in column N%: the NCC al-
ways isolated a set of hard instances to classify. Con-
sequently, the prediction on the rest of units (column
C1%) is always an improvement compared to the pre-
diction on the entire data set (Ns%). Thus the NCC
realized a robust prediction when it deemed that there
was sufficient knowledge to isolate a single class.

Second, the mentioned area of ignorance can be quite
large and therefore it cannot be neglected. For in-
stance, it is made of about 45 units out of 1000 in the



German database. We should expect such a value to
be larger for classifiers with weaker assumptions com-
pared to (1), because, as it is well-known [2, 6], the
variability of the model probabilities would be larger
and so would be the prediction accuracy. This fact
strongly supports the need of a proper treatment of
imprecision, as the one the NCC realizes.

Finally, let us emphasize how the comparison of the
credal classifier with its precise-probability counter-
parts was useful to the analysis. This seems to be
important as far as the experimental methodology is
concerned.

6 Interpreting NCC-vs-NBC
behaviors

The results on the LetterAB data set show that the
NBC can sometimes have a good accuracy on the sub-
set of instances where the NCC suspends the judg-
ment. At first glace this seems to contradict the ability
of the NCC to isolate an area of ignorance. The fol-
lowing subsections describe this phenomenon by some
examples and show that the behavior of the NBC,
though seemingly successful, is instead unreasonable.

6.1 A class does not appear in the sample

We analyze the behavior of the NCC on a data set
where a class never appears. Let us consider a bi-
nary class taking values in the set {¢/,¢”} and 20
binary attributes, with values in {a;,a}} for each i.
We use the notation introduced for problem (13). In
particular, we consider the values: s = 1, &k = 20,
a=n(d)=10% B =n(c") =0, a; = n(a;|c') = /2
and B; = n(a;|¢”) = 0 for each i. By (13), we
have h(1) = 10%/220 ~ 0.95 < 1, so that ¢’ is
not credal-dominated by ¢ when the instance a =
(a1,az,...,ar) is observed; and the output of the
NCC is thus {¢/,c"}.

This seems strange because n(c¢’) = 10° is much larger
than n(¢”) = 0. Compare this with the behavior of
the NBC inferred by using Haldane’s prior (similar
arguments can be used for the other priors), whose
output is ¢/. Which classifier is right?

We can use the following argument to decide. We
should prefer ¢’ to ¢ iff we were confident that 6./ o >
Ocr o and intuitively this is true iff n(alc’) is sub-
stantially larger than n(a|c” ). Under assumption (1),
we are allowed to write n(a|c’) ~ n(c’) Hle Oa,)er =
n(c) Hle nf(i'c,c)) ~ 1 and similarly n(a|c”) ~ 0.
We have that n(a|c’) is not substantially larger than
n(alc”), so we should not discard the case C' = ¢”.

The NCC appears to be right and the NBC to be

wrong. (Note that this is also an example of how the
NCC can deal with rare events, which are another
critical problem in the field of classification.)

Counter-intuitive facts like this should be taken
into account especially when experimental evaluations
were concerned, because they generally provide us
only with a partial view. For example, if we used
cross-validation on a data set like the one above, the
NBC would have a very good prediction accuracy in
the subset of instances where the NCC suspends the
judgment, even up to 100%. This would not contra-
dict the ability of the NCC to isolate an area of igno-
rance; and also, the NBC should not be the classifier
to choose. Its behavior on the finite sample does not
provide us with any reasonable confidence of being
extendable to a larger sample.

6.2 If the independence assumption fails

We consider another data set where a class does not
appear. In this case the behavior of the classifiers is
similar to the one reported in the preceding section,
but the explanation differs.

Consider Tab. 5. It represents a sample where each
unit is an instance of three binary attributes and a
binary class. Notice that ¢’ is never observed.

Ay Ay Az O
a1 ay a3 C
ai ay az ¢
ap ay a3
ap ay a3
ay ay af
ay ay af
ay ay a
ay ay a

Table 5: A set of data that does not support the as-
sumption of independence.

Consider s = 1. Given observation a = (ay, az, as), it
is easy to verify that the output of the NCCis {¢/, ¢},
whereas the NBC inferred by using Haldane’s prior
outputs ¢’. Note that in Tab. 5 we have n(a|d’) = 4
and n(alc”) = 0, so, in contrast with the discussion
in Sect. 6.1, in this case we should discard the case
C = ¢”. Thus the NBC, proposing the right solution,
seems to be right and the NCC to be wrong.

The situation is reversed if we interpret the ques-
tion more carefully. As in Sect. 6.1, we can write

n(ald) ~ n(e)[Ie, Med) —
n(alc”) =~ 0. These values do not allow us to discard
the class ¢”’. Hence the NCC is methodologically right.

It remains to understand what is the actual source of

1 and similarly



the problem. The problem lies in the poor evaluation
of n(alc’), caused by a serious violation of assump-
tion (1) in the data. Both classifiers do not realize
that n(a|c’) is sufficiently larger than n(a|c”), as it
appears from the data set. Their reaction to this fact
is then different, because of their different attitudes
towards risk. The optimistic bias of the NBC makes
it choose the class ¢/, but this is not justified by the
evidence that is available to the classifier.

The discussion highlights a useful question as far as
experiments are concerned: when the NBC has a good
accuracy on the instances on which the NCC sus-
pends the judgment, this may suggest that assump-
tion (1) seriously disagrees with the evidence coming
from data and that more structured classifiers may be
needed.

6.3 Another failure of the independence
assumption

We can obtain a behavior of the NCC as that de-
scribed in the preceding section also when all the
classes appear in the sample, as in Tab. 6. In the
sample there are four binary attributes and a binary
class. We consider s = 2 for the NCC and Haldane’s
prior for the NBC.

Ay Ay A3 Ay C
ay ah az a)
ay ah az a)
ay ah az a)
ay ay ay ay
ay ah ay ay
ay ay az a)
ay ay az ay
ay ay az ay
a1 ay ag ay
ay ay az a)

Table 6: Another failure of assumption (1).

Given observation (ai,ah,as,a}), we have that
P(d" a1,ay,a3,a)) = 0 for the NBC, because
P(ab|c”) = 0, and hence the NBC prefers ¢’ to ¢”.
In contrast, ¢’ is not credally dominated for the NCC
because h(7/4) = 225/253.2 < 1 (see Sect. 2.5.1).

It is possible to follow the same arguments given in
Sect. 6.2 to interpret this behavior. The example en-
forces the evidence related to the problems that can
arise for a wrong assumption of independence. This
might be the case of the LetterAB data set (see Sect.
5.3), where the configurations of pixels for a letter are
likely to seriously violate (1).

6.4 A note on missing data

The above discussion on the violation of the in-
dependence assumption puts the treatment of
missing data proposed in Sect. 3 under a new
light. Consider the following incomplete sample
for two independent binary variables (Aj, As):
[(ala*)a(*>a2)a(ala*)a(*>a2)a(a1a*)>(*>a2)]- By
considering all the possible replacements of the
missing data with known values, we also take
into account complete samples that clearly violate
the assumption of independence, as in this case:
[(a17a/2)7(a/17a2)7(alvaé)7(a/17a2)7(a17a/2)v(allva2)]‘
However, the independence assumption (1) is com-
monly used as a convenient approximation for
the purposes of classification. In this spirit, it is
reasonable to consider the latter sample, too.

7 Conclusions

The classification literature seems to neglect the topic
of properly treating imprecision. This is unreasonable
as also for simple classifiers like those presented here,
imprecision renders the classification indeterminate in
a number of cases; and because treating imprecision
soundly and efficiently is possible, as shown here.

The bottom-line advantage of using credal classi-
fiers is the robustness of the classification: we know
that, given the chosen model, unreasonable predic-
tions are automatically discarded. The need of do-
ing post-classification analysis is greatly reduced. This
particularly suits the current needs of the field—due
to the several possible applications and great avail-
ability of databases—such as obtaining quick and ro-
bust responses.

But robustness is a core characteristic that extends
far beyond this point: e.g., to missing data. These
constitute a pervasive problem in the practice of clas-
sification and are recognized as a critical theoretical
topic. By the proposed approach, it is possible to build
a classifier that is robust to every missingness mecha-
nism. Again, this does not require expensive compu-
tations and provides us with a tool based on a clear
approach that we can easily trust.

More broadly speaking, relaxing the assumption of
precision seems to be a way to cope with the most
critical problems. Apart from the discussed cases of
small and incomplete samples, also massive databases
might profit from credal classification. These are huge
samples for which it is impractical to scan the entire
database, so that the inference phase must be based
on a subset of the observations. Choosing when to stop
reading the data and obtaining robust classifications



are then two important problems. By using a credal
classifier these might be addressed in a natural way:
ideally the inference phase might be stopped when
the classifications were precise—i.e. when there was
enough evidence to isolate a single class; whenever it
had to be stopped earlier, the obtained classification
would be robust by definition.

There is evidence suggesting that credal classifiers can
have a deep impact on classification. More research
efforts are needed to develop new credal classifiers and
to improve upon the existing tools.
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