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Laboratory for Intelligent Systems
University of Economics, Prague


and
Institute of Information Theory and Automation


Academy of Science of the Czech Republic
vejnar@vse.cz


Abstract
A possibilistic marginal problem will be introduced
in a way analogous to probabilistic framework, to ad-
dress the question of whether or not a common exten-
sion exists for a given set of marginal distributions.
Similarities and differences between possibilistic and
probabilistic marginal problems will be demonstrated,
concerning necessary and sufficient conditions and
sets of all solutions. Finally, the operators of com-
position will be introduced and we will show how to
use them for finding a T -product extension.


Keywords. Marginal problem, possibility distribu-
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1 Introduction


The marginal problem — which addresses the ques-
tion of whether or not a common extension exists for
a given set of marginal distributions — is one of the
most challenging problem types of probability theory.
The challenges lie not only in its applicability to var-
ious problems of statistics, but also to a wide range
of relevant theoretical problems. One of them is the
problem of finding sufficient conditions for the exis-
tence of a solution to this problem.


If an extension exists, it is usually not unique, i.e., the
problem has an infinite number of solutions. There-
fore the problem of existence of an extension is usually
solved together with the problem of choosing an — in
a sense — optimal representative from within the set
of all possible solutions.


Nevertheless, in the last thirty years new mathemat-
ical tools have emerged as alternatives to probability
theory. They are used in situations whose nature of
uncertainty does not meet the requirements of prob-
ability theory, or those in which probabilistic criteria
are too strict (e.g., additivity). On the other hand,
probability theory has always served as a source of in-


spiration for the development of these nonprobabilis-
tic calculi and they have been continually confronted
with probability theory and mathematical statistics
from various points of view.


In this paper we will introduce a possibilistic marginal
problem analogous to the probabilistic framework,
i.e., in a somewhat more general way than in [3, 4].
We will demonstrate the similarities and differences
with probabilistic marginal problems concerning nec-
essary and sufficient conditions, sets of solutions and
so-called product solutions. In the last section we
will recall the definition of composition operators for
possibility distributions introduced in [11] and show
how to use them for solving the possibilistic marginal
problem under specific conditions.


2 Basic Notions


The purpose of this section is to give, as briefly as
possible, an overview of basic notions of De Cooman’s
measure-theoretical approach to possibility theory [5],
necessary for understanding the paper. Special atten-
tion will be paid to conditioning, independence and
conditional independence [13, 14, 15]. We will start
with the notion of a triangular norm, since most no-
tions in this paper are parametrised by it.


2.1 Triangular Norms


A triangular norm (or a t-norm) T is a binary oper-
ator on [0, 1] (i.e. T : [0, 1]2 → [0, 1]) satisfying the
following three conditions:


(i) boundary condition: for any a ∈ [0, 1]


T (1, a) = a;


(ii) isotonicity: for any a1, a2, b ∈ [0, 1] such that
a1 ≤ a2


T (a1, b) ≤ T (a2, b);







(iii) associativity: for any a, b, c ∈ [0, 1]


T (T (a, b), c) = T (a, T (b, c)),


(iv) commutativity: for any a, b ∈ [0, 1]


T (a, b) = T (b, a).


Let us note that isotonicity in the second coordinate is
an easy consequence of (iv) and the “second boundary
condition” T (0, a) = 0 of (i),(ii) and (iv).


A t-norm T is called continuous if T is a continuous
function. Within this paper, we will only deal with
continuous t-norms.


There exist three important continuous t-norms,
which will be used in examples:


(i) Gödel’s t-norm: T (a, b) = min(a, b);


(ii) product t-norm: T (a, b) = a · b;


(iii)  Lukasziewicz’s t-norm: T (a, b) = max(0, a + b −
1).


Let x, y ∈ [0, 1] and T be a t-norm. We will call an
element z ∈ [0, 1] T -inverse of x w.r.t. y if


T (z, x) = T (x, z) = y. (1)


It is obvious that if x ≤ y then there are no T -inverses
of x w.r.t. y.


Let x, y ∈ [0, 1]. The T -residual y4T x of y by x is
defined as


y4T x = sup{z ∈ [0, 1] : T (z, x) ≤ y}.


The following lemma, proven in [5] (i) and [12] (ii),
expresses the relationship between T -inverses and T -
residuals for continuous t-norms.


Lemma 1 (i) Let T a be continuous t-norm and let
x, y ∈ [0, 1]. If the equation T (z, x) = y in z
admits a solution, then y4T x is its greatest so-
lution.


(ii) Let T be a continuous t-norm. Then, for any
x1, x2, y1, y2 ∈ [0, 1] such that x2 ≥ x1 and y2 ≥
y1, the equality


T (x14T x2, y14T y2)


= T (x1, y1)4T T (x2, y2) (2)


is satisfied.


2.2 Possibility Measures and Distributions


Let X be a finite set called universe of discourse which
is supposed to contain at least two elements. A pos-
sibility measure Π is a mapping from the power set
P(X) of X to the real unit interval [0, 1] satisfying
the following requirement: for any family {Aj , j ∈ J}
of elements of P(X)


Π(
⋃


j∈J


Aj) = max
j∈J


Π(Aj)1.


For any A ∈ P(X), Π(A) is called the possibility of A.
Π is called normal if Π(X) = 1. Within this paper we
will always assume that Π is normal.


For any Π there exists a mapping π : X → [0, 1],
called a distribution of Π, such that for any A ∈ P(X),
Π(A) = supx∈A π(x). This function is a possibilistic
counterpart of a density function in probability the-
ory. It is evident that (in the finite case) Π is normal
iff there exists at least one x ∈ X such that π(x) = 1.


Let X1 and X2 denote two finite universes of discourse
provided by possibility measures Π1 and Π2, respec-
tively. The possibility measure Π on X1×X2 is called
T -product possibility measure of Π1 and Π2 (denoted
Π1 ×T Π2) if for any A1 ∈ P(X1) and A2 ∈ P(X2)


Π(A1 ×A2) = T (Π(A1), Π(A2)),


or, equivalently, for the corresponding possibility dis-
tributions for any (x1, x2) ∈ X1 ×X2


π(x1, x2) = T (π1(x1), π2(x2)). (3)


Now, let us consider an arbitrary possibility measure
Π defined on a product universe of discourse X×Y.
The marginal possibility measure on X is defined by
the equality


ΠX(A) = Π(A×Y)


for any A ⊂ X, and the respective marginal possibility
distribution by the corresponding expression


πX(x) = max
y∈Y


π(x, y) (4)


for any x ∈ X.


Let us consider a finite basic space Ω, provided by a
possibility measure ΠΩ with distribution πΩ. A map-
ping X : Ω −→ X is called possibilistic variable2 in
X. The induced (or transformed) possibility measure
ΠX on X is determined by


ΠX(A) = ΠΩ(X−1(A))
1max must be substituted by sup if X is not finite.
2This definition corresponds to that introduced by De


Cooman in [5], but it is simplified due to the assumption that
possibility measures are defined on power sets instead of general
ample fields.







for any A ∈ P(X) and its distribution is


πX(x) = max
ω:X(ω)=x


πΩ(ω)


for any x ∈ X.


Example 1 Let Ω = {ω1, ω2, ω3} and X = {x1, x2}.
Let ΠΩ be defined by its distribution πΩ as follows:


πΩ(ω1) = 1, πΩ(ω2) = 0.5, πΩ(ω3) = 0.2,


Then X : Ω −→ X defined by X(ω1) = X(ω2) = x1


and X(ω3) = x2 is possibilistic variable, with induced
distribution


πX(x1) = 1, πX(x2) = 0.2. 3


A mapping h : X → [0, 1] is called fuzzy variable, i.e.
fuzzy variable is a special case of possibilistic variable.
The set of all fuzzy variables on X will be denoted by
G(X).


2.3 Conditioning


Let T be a t-norm on [0, 1]. For any possibility mea-
sure Π on X with distribution π, we define the fol-
lowing binary relation on G(X). For h1 and h2 in
G(X) we say that h1 and h2 are (Π, T )-equal almost


everywhere (and write h1
(Π,T )


= h2) if for any x ∈ X


T (h1(x), π(x)) = T (h2(x), π(x)).


This notion is very important for the definition of con-
ditional possibility distribution which is defined (in ac-
cordance with [5]) as any solution of the equation


πXY (x, y) = T (πY (y), πX|
T


Y (x|
T
y)), (5)


for any (x, y) ∈ X × Y. Continuity of a t-norm T
guarantees the existence of a solution of this equa-
tion. This solution is not unique (in general), but the
ambiguity vanishes when almost-everywhere equality
is considered. We are able to obtain a representative
of these conditional possibility distributions (if T is a
continuous t-norm) by taking the residual


πX|
T


Y (x|
T
·) (ΠY ,T )


= πXY (x, ·)4T πY (·), (6)


i.e., the greatest solution of the equation (5) (cf.
Lemma 1).


Let us mention that, if we use a product t-norm,
we will obtain Dempster’s rule of conditioning [6],
 Lukasziewicz’ t-norm corresponds to “ Lukasziewicz’ ”
rule of conditioning [8], Gödel’s t-norm leads to His-
dal’s rule of conditioning [9] and the choice of Gödel’s


t-norm together with (6) gives the modification of His-
dal’s rule proposed by Dubois and Prade [7]. For a
more detailed study of the conditioning rules based
on continuous t-norms, the reader is referred to the
paper by De Baets et al. [1].


As mentioned in the preceding paragraph, this way of
conditioning brings a unifying view on several condi-
tioning rules, i.e., its importance from the theoretical
viewpoint is obvious. On the other hand, its practical
meaning is not substantial. Although De Cooman [5]
claims that conditional distributions are never used
per se, there exist situations in which it is necessary
to be careful and to choose an appropriate represen-
tative of the set of solutions (cf. Example 5).


There exist other approaches to conditioning intro-
duced Walley and De Cooman [16] and by Bouchon-
Meunier et al. in [2]. These approaches is completely
different from ours, since the first one is based on
natural extensions and in the latter conditional pos-
sibility measures are computed directly for particular
conditional events and not from joint and marginal
distributions. For more details see the cited works.


2.4 Independence


Two variables X and Y (taking their values in X and
Y, respectively) are possibilistically T -independent [5]
if for any FX ∈ X−1(P(X)), FY ∈ Y −1(P(Y)),


Π(FX ∩ FY ) = T (Π(FX), Π(FY )),


Π(FX ∩ FC
Y ) = T (Π(FX), Π(FC


Y )),


Π(FC
X ∩ FY ) = T (Π(FC


X ), Π(FY )),


Π(FC
X ∩ FC


Y ) = T (Π(FC
X ), Π(FC


Y )),


where AC denotes the complement of A.


From this definition it immediately follows that the
independence notion is parameterised by T . More
specifically, it means that if X and Y are min-
independent, they need not be, for example, product-
independent. This fact is reflected in some definitions
and assertions that follow.


From the perspective of the next paragraph, the fol-
lowing theorem, an immediate consequence of Propo-
sition 2.6. of the above-mentioned paper [5], is of
great importance.


Theorem 1 Let us assume that a t-norm T is contin-
uous. Then the following propositions are equivalent.


(i) X and Y are T -independent.


(ii) For any x ∈ X and y ∈ Y


πXY (x, y) = T (πX(x), πY (y)).







(iii) For any x ∈ X and y ∈ Y


T (πX(x), πY (y)) = T (πX|
T


Y (x|
T
y), πY (y))


= T (πY |
T


X(y|
T
x), πX(x)).


This theorem claims that the notion of independence
defined by De Cooman is equivalent (for T = min)
to Zadeh’s notion of noninteractivity [17] and, in a
sense, also to Hisdal’s notion of independence [9] — if
the equality sign is substituted by almost-everywhere
equality.


2.5 Conditional Independence


In light of these facts, we defined the conditional pos-
sibilistic independence in the following way in [12]:
Given a possibility measure Π on X × Y × Z with
the respective distribution π(x, y, z), variables X and
Y are possibilistically conditionally T -independent
given Z (in symbols IT (X, Y |Z)) if, for any pair
(x, y) ∈ X×Y,


πXY |
T


Z(x, y|
T
·)


(ΠZ ,T )
= T (πX|


T
Z(x|


T
·), πY |


T
Z(y|


T
·)). (7)


Let us stress again that we do not deal with the point-
wise equality but with the almost everywhere equality,
in contrast to the conditional noninteractivity intro-
duced by Fonck [8]. The following theorem is a “con-
ditional counterpart” of Theorem 1.


Theorem 2 For a continuous t-norm T, the follow-
ing propositions are equivalent:


(i) X and Y are T -independent given Z.


(ii) For any x ∈ X, y ∈ Y and z ∈ Z


πX|
T


Y Z(x|
T
y, z)


(ΠY Z ,T )
= πX|


T
Z(x|


T
z). (8)


Theorem 2 unifies the notions of conditional nonin-
teractivity [8] and that of conditional independence in
Hisdal’s sense [8, 3], as well as in Dempster’s [8, 4] and
“ Lukasziewicz’ ” [8] (if we substitute Gödel’s t-norm
by product and  Lukasziewicz’ t-norms, respectively)
in such a way that pointwise equalities are substituted
by almost everywhere equalities.


In [13, 14, 15] we have shown that by adopting the
conditional independence notion (7), we will obtain
most of the previously presented conditional indepen-
dence relations. Formal properties (so-called semi-
graphoid and graphoid ones) of this measure-theoretic
approach to conditional independence correspond, in


general, to those possessed by stochastic conditional
independence. This fact allowed us to introduce
Markov properties and factorisation of possibility dis-
tribution and to find the relationships between them.
For more details, the reader is referred to [13, 14, 15].


3 Possibilistic Marginal Problem


Let {Xi}i∈N be a finite system of finitely-valued vari-
ables with values in {Xi}i∈N . We will deal with pos-
sibility distributions on the Cartesian-product space


X =×i∈NXi,


and distributions on its subspaces


XK =×i∈KXi


for K ⊂ N .


Using the procedure of marginalisation (4) we can al-
ways uniquely restrict a possibility distribution π de-
fined on X to the distribution πK defined on XK for
K ⊂ N (for K = ∅ let us set πK ≡ 1). However, the
opposite process, the procedure of an extension of a
system of distributions πKi , i = 1, . . . , m defined on
XKi to a distribution πK on XK (K = K1∪· · ·∪Km),
is not unique (if it exists) and can be done in many
ways.


Let us demonstrate this fact with two simple exam-
ples.


3.1 Two Simple Examples


Example 2 Let X1 = X2 = {0, 1} and let π1 and π2


be defined by Table 1.


Table 1: Example 2 — given marginal distributions
X1 0 1
π1 1 .7


X2 0 1
π2 .5 1


Our task is to find a two-dimensional possibility dis-
tribution π satisfying these marginal constraints. It is
easy to realize that any possibility distribution from
Table 2 such that α, β ∈ [0, 0.5] and max(α, β) = 0.5
is a solution to this problem. 3


Table 2: Example 2 — set of extensions
π X2 0 1
X1 = 0 α 1
X1 = 1 β .7


Example 3 can be found in [3] in a slightly more
general form. Let X1 = X2 = X3 = {0, 1}, K1 =
{1, 3},K2 = {2, 3} and let π13 and π23 be defined as
expressed by Table 3.







Table 3: Example 3 — given marginals
π13 X3 0 1


X1 = 0 .4 1
X1 = 1 1 .7


π23 X3 0 1
X2 = 0 .2 1
X2 = 1 1 .4


Let us look for a three-dimensional possibility dis-
tribution having these distributions as its marginals.
The result can be any distribution from within the
set of distributions contained in Table 4, where,
α, β ∈ [0, 0.2], γ, δ ∈ [0, 0.4] and max(α, β) =
0.2, max(γ, δ) = 0.4. 3


Table 4: Example 3 — set of extensions
π X3 0 1


X2 0 1 0 1
X1 = 0 α .4 1 γ
X1 = 1 β 1 .7 δ


3.2 Definition


The possibilistic marginal problem can be (analogous
to probability theory) understood as follows: Let us
assume that Xi, i ∈ N , 1 ≤ |N | < ∞ are finite uni-
verses of discourse, K is a system of nonempty subsets
of N and


S = {πK ,K ∈ K}
is a family of possibility distributions, where each πK
is a distribution on a product space


XK =×i∈KXi.


The problem we are interested in is the existence of an
extension, i.e. a distribution π on X whose marginals
are distributions from S; or, more generally, the set


P = {π(x) : π(xK) = πK(xK),K ∈ K}


is of interest.


Let us stress that the introduced problem is different
from those solved by De Campos and Huete in [3, 4].
They defined the marginal problem in a somewhat
different way: Let π13 and π23 be two possibility dis-
tributions of X1, X3 and X2, X3, respectively. Then
the distribution π of X1, X2, X3 has to satisfy:


1. X1 and X2 must be independent, given X3, i.e.
I(X1, X2|X3) (where I is one of the independence
relations studied in [3, 4]) holds for the distribu-
tion π.


2. Marginal distribution of X1, X3 must be pre-
served, i.e. π(x1, x3) = π13(x1, x3).


3. Marginal distribution of X2, X3 must be pre-
served, i.e. π(x2, x3) = π23(x2, x3).


They realised that the requirement of the conditional
independence IH (i.e. “not modifying the informa-
tion” for Hisdal’s conditioning rule [3])3 may cause
that these three conditions need not be, in some cases,
satisfied simultaneously (in particular, in Example 3).
Since our concept of conditional independence is not
so strict (pointwise equality is substituted by almost
everywhere equality), this situation cannot occur if
any continuous t-norm is considered.


Because of these problems, De Campos and Huete
suggested that the possibility distribution should sat-
isfy the conditional independence constraint and the
first of the marginal ones; for more details see [3].
This approach seems to be somewhat off the mark,
since in the marginal problem the primary task is to
preserve marginals and (conditional) independence is
just a tool that helps us to find a unique solution (if
it exists).


Therefore, the question of the existence of an exten-
sion will be the focus of our attention in the following
paragraph.


3.3 Necessary and Sufficient Conditions


Let us note that we will not be able to find any
three-dimensional distribution with prescribed two-
dimensional marginals in Example 3 if these marginals
do not satisfy quite a natural condition called a pro-
jectivity (or compatibility) condition. We will say (in
a general case) that two possibility distributions πI
and πJ (defined on XI and XJ) are projective if they
have common marginals, i.e. if


πI(xI∩J ) = πJ(xI∩J).


This condition is clearly necessary but it is not suffi-
cient, as demonstrated in Example 4.


Example 4 Let X1 = X2 = X3 = {0, 1} and con-
sider π12, π13 and π23 from Table 5.


Table 5: Example 4 — given marginals
π12 X2 0 1


X1 = 0 1 0
X1 = 1 0 1


π13 X3 0 1
X1 = 0 1 0
X1 = 1 0 1


π23 X3 0 1
X2 = 0 0 1
X2 = 1 1 0


Although these three distributions are projective
(more exactly, π12(x1) ≡ π13(x1) ≡ 1, π12(x2) ≡


3It is, in fact, a pointwise version of (8) for Gödel’s t-norm.







π23(x2) ≡ 1 and π13(x3) ≡ π23(x3) ≡ 1), a three-
dimensional possibility distribution π having them as
its marginals does not exist. It follows from the fact
that it should be equal to zero for any combination
of values x1, x2 and x3 (as expressed by Table 6),
because of the zero marginals, but simultaneously the


Table 6: Example 4 — “extension”
X3 0 1
X2 0 1 0 1


X1 = 0 0 0 0 0
X1 = 1 0 0 0 0


maximum value of e.g. π(0, 0, 0) and π(0, 0, 1) should
be equal to 1. 3


In the probabilistic framework, projectivity is a nec-
essary condition for the existence of an extension, too,
and becomes a sufficient condition if the index sets of
the marginals can be ordered in such a way that it
satisfies a special property called the running inter-
section property (see e.g. [10]). At the end of the
next section we will recall this notion and prove an
analogous result in the possibilistic framework.


3.4 Sets of Extensions


If a solution of a possibilistic marginal problem exists,
it is (usually) not unique, as we have already seen in
Examples 2 and 3. This fact is completely analogous
to the probabilistic framework. However, contrary to
the probabilistic marginal problem, the set of exten-
sions of a set of possibility distributions is (generally)
not convex. This means that if we have two solutions
of the marginal problem π and ρ, their linear combi-
nation σ = α ·π +(1−α) ·ρ for α ∈ (0, 1) needn’t be a
solution to this problem. On the other hand, the set of
solutions is closed under maximisation, i.e. distribu-
tion τ defined by the equality τ(x) = max(π(x), ρ(x))
for any x ∈ X is again a solution to that problem. Let
us illustrate these two facts with the following simple
example.


Example 2 (Continued) We have already realized
that possibility distributions


π(0, 0) = 0.5, ρ(0, 0) = 0.1,
π(0, 1) = 1, ρ(0, 1) = 1,
π(1, 0) = 0.2, ρ(0, 0) = 0.5,
π(0, 1) = 0.7, ρ(0, 1) = 0.7


are solutions of the respective marginal problem, but
their linear combinations


σ(0, 0) = 0.1 + 0.4α,
σ(0, 1) = 1,
σ(1, 0) = 0.5− 0.3α
σ(0, 1) = 0.7


are not, since σY (0) = max(0.1 + 0.4α, 0.5− 0.3α) <
0.5 for α ∈ (0, 1). On the other hand, distribution


τ(0, 0) = 0.5,
τ(0, 1) = 1,
τ(1, 0) = 0.5
τ(0, 1) = 0.7


is clearly a solution of that possibilistic marginal prob-
lem. 3


3.5 T -product Extensions


It is evident that it is difficult to handle the whole set
of extensions and therefore an additional requirement
is necessary to enable us to choose one representative
of this set. The most natural requirement seems to
be that of (conditional) independence.


There exists a special class of solutions to a marginal
problem, namely the class of T -product distributions,
defined in Paragraph 2.2. If K1 and K2 are disjoint,
the resulting distribution is just a T -product4 of the
given distributions, i.e.,


π̃(xK1∪K2) = π̃(xK1 , xK2)


= T (π1(xK1), π2(xK2)). (9)


For different t-norms we obtain different T -product
extensions, as can be seen from the following example.


Example 2 (Continued) For Gödel’s, product and
 Lukasziewicz’ t-norms we get


αG = 0.5, αp = 0.5, αL = 0.5,
βG = 0.5, βp = 0.35, βL = 0.2,


respectively. Nevertheless, not all two-dimensional
possibility distributions satisfying the
above-mentioned constraints can be obtained as T -
product distributions (for a suitable t-norm T ). For
example, there does not exist a t-norm T such that


αT = 0.1, βT = 0.5


are T -products of πY (0) and πX(0) and πX(1), re-
spectively. This distribution violates both (i) and (ii)
of the definition of a t-norm, nevertheless it is an ex-
tension of both πX and πY . 3


It follows from Theorem 1 that the equality (9) holds
iff XK1 and XK2 are T -independent.


The generalization of a T -product extension to a gen-
eral set of marginal distributions with pairwise dis-
joint index sets is straightforward.


4Although it is not expressed explicitly, we have to keep in
mind that distributions π̃ are parameterised by T .







If the index sets are not disjoint, the situation is some-
what more complicated. Let us assume π1 and π2 be
projective distributions of XK1 and XK2 , respectively,
K1 ∩K2 6= ∅. Then the T -product extension of these
distributions can be defined by the equality


π̃(xK1∪K2)


= T (π1(xK1), π2(xK2)4T π2(xK1∩K2)), (10)


or, equivalently by


π̃(xK1∪K2)


= T (π1(xK1)4T π1(xK1∩K2), π2(xK2)).


Example 3 (Continued) Considering marginal dis-
tributions π12 and π23 from Table 3 we will obtain
for Gödel’s, product and  Lukasziewicz’ t-norms:


αG = 0.2, αp = 0.08, αL = 0,
βG = 0.2, βp = 0.2, βL = 0.2,
γG = 0.4, γp = 0.4, γL = 0.4,
δG = 0.4, δp = 0.28, δL = 0.1.


Nevertheless, also in this case there exist distributions
having π13 and π23 as their marginals, which cannot
be expressed by the equation (10) for any continuous
t-norm T , e.g. the distribution with


α = 0.2, β = 0.1, γ = 0.3, δ = 0.4. 3


Let us note that it is not possible to use an arbitrary
solution of the equation (5) in the definition of the
distribution π̃ if we want this distribution to be an
extension of both its marginals. This is demonstrated
by the following counterexample.


Example 5 Let X1 = X2 = X3 = {0, 1} and K1 =
{1, 2},K2 = {2, 3}. Let π12 and π23 be defined by
Table 7.


Table 7: Example 5 — distributions π12 and π23
π12 X2 0 1


X1 = 0 0 0
X1 = 1 1 0


π23 X3 0 1
X2 = 0 1 1
X2 = 1 0 0


Since the marginal of π23 on X2 is


π2(0) = 1, π2(1) = 0,


we will obtain that generally (for any choice of a t-
norm)


π3|
T


2(i|
T


0) = 1,
π3|


T
2(i|


T
1) ∈ [0, 1].


If we used this set of conditional possibility distribu-
tions for definition of another “T -product” extension


ρ̃(x1, x2, x3) = T (π12(x1, x2), π3|
T


2(x3|T x2)),


Table 8: Example 5 — set of distributions ρ̃
X3 0 1
X2 0 1 0 1


X1 = 0 0 α 0 β
X1 = 1 1 γ 1 δ


we would obtain distributions whose values are in Ta-
ble 8 where α, β, γ, δ ∈ [0, 1] and by simple marginal-
ization we finally get their marginals ρ̃12 (see Table 9),
which evidently differ (in general) from π12. 3


Table 9: Example 5 — set of marginals ρ̃12
X2 0 1


X1 = 0 0 max(α, β)
X1 = 1 1 max(γ, δ)


The following lemma expresses the relationship be-
tween T -product extensions and conditional indepen-
dence.


Lemma 2 Let T be a continuous t-norm and π1 and
π2 be projective possibility distributions of XK1 and
XK2 , respectively. Then the distribution π of XK1∪K2


π(xK1∪K2) =


= T (π1(xK1), π2(xK2)4T π2(xK1∩K2)) (11)


= T (π1(xK1)4T π1(xK1∩K2), π2(xK2)),


if and only if XK1\K2 and XK2\K1 are conditionally
independent, given XK1∩K2 .


Proof. Using associativity and commutativity of T ,
Lemma 1 and projectivity of π1 and π2, we have


π(xK1∪K2)


= T (π(xK1∪K2\(K1∩K2)|T xK1∩K2), π(xK1∩K2))


= T (T (π(xK1\K2 |T xK1∩K2), π(xK2\K1 |T xK1∩K2)),


π(xK1∩K2))


= T (π1(xK1\K2 |T xK1∩K2),


T (π2(xK2\K1 |T xK1∩K2), π2(xK1∩K2)))


= T (π1(xK1\K2 |T xK1∩K2),


T (π2(xK2)4T π2(xK1∩K2), π2(xK1∩K2)))


= T (π1(xK1\K2 |T xK1∩K2),


T (π2(xK1∩K2), π2(xK2\K1)4T π2(xK1∩K2)))


= T (T (π1(xK1\K2 |T xK1∩K2), π1(xK1∩K2)),


π2(xK2)4T π2(xK1∩K2))


= T (π1(xK1), π2(xK2)4T π2(xK1∩K2)),


where the second equality holds if and only if
XK1\(K1∩K2) and XK2\(K1∩K2) are conditionally in-
dependent given XK1∩K2 . The second equality in (11)







is satisfied due to the fact that πK1 and πK2 are pro-
jective. 2


A generalisation of this approach to a more general
system S of marginal possibility distributions will be
at the centre of our attention in the next section (more
precisely, in its last paragraph).


4 Operators of Composition


Operators of composition introduced in [11] are based
on a generalisation of the above-mentioned idea. Con-
sidering a continuous t-norm T , two subsets K1,K2


of {1, . . . , N} (not necessarily disjoint) and two nor-
mal possibility distributions π1(xK1) and π2(xK2),5


we define the operator of right composition of these
possibilistic distributions by the expression


π1 (xK1) .T π2 (xK2)


= T (π1 (xK1) , π2 (xK2)4T π2 (xK1∩K2)) ,


and analogously the operator of left composition by
the expression


π1 (xK1) /T π2 (xK2)


= T (π1 (xK1)4T π1 (xK1∩K2) , π2 (xK2)) .


It is evident that both π1 .T π2 and π1 /T π2 are (gen-
erally different) possibility distributions of variables
(Xi)i∈K1∪K2 .


Now, we will present two lemmata proven in [11], ex-
pressing basic properties of these operators.


Lemma 3 Let T be a continuous t-norm and π1(xK1)
and π2(xK2) be two distributions. Then


(π1 .T π2)(xK1) = π1(xK1)


and
(π1 /T π2)(xK2) = π2(xK2).


Lemma 4 Consider two distributions π1(xK1) and
π2(xK2). Then


(π1 .T π2)(xK1∪K2) = (π1 /T π2)(xK1∪K2)


for any continuous t-norm T iff


π1(xK1∩K2) = π2(xK2∩K1).


4.1 Generating sequences


In this section we will show how to apply the opera-
tors iteratively. Consider a sequence of distributions
π1(xK1), π2(xK2), . . . , πm(xKm) and the expression


π1 .T π2 .T . . . .T πm.
5Let us stress that for the definition of these operators we


do not require projectivity of distributions π1 and π2.


Before beginning a discussion of its properties, we
have to explain how to interpret it. Though we did
not mention it explicitly, the operator .T (as well as
/T ) is neither commutative nor associative.6 There-
fore, generally


(π1 .T π2) .T π3 6= π1 .T (π2 .T π3).


For this reason, let us note that in the part that fol-
lows, we always apply the operators from left to right,
i. e.


π1 .T π2 .T π3 .T . . . .T πm


= (. . . ((π1 .T π2) .T π3) .T . . . .T πm).


This expression defines a multidimensional distribu-
tion of XK1∪...∪Km . Therefore, for any permutation
i1, i2, . . . , im of indices 1, . . . , m the expression


πi1 .T πi2 . . . . .T πim


determines a distribution of the same family of vari-
ables, however, for different permutations these dis-
tributions can differ from one another. In the fol-
lowing paragraph we will deal with special generating
sequences (or their special permutations), which seem
to possess the most advantageous properties.


4.2 Perfect sequences


An ordered sequence of possibility distributions
π1, π2, . . . , πm is said to be perfect if


π1 .T π2 = π1 /T π2,


π1 .T π2 .T π3 = π1 /T π2 /T π3,
...


π1 .T · · · .T πm = π1 /T · · · /T πm.


The notion of T -perfectness suggests that a sequence
perfect with respect to one t-norm needn’t be perfect
with respect to another t-norm, analogous to (condi-
tional) T -independence. Let us demonstrate it on the
following simple example.


Example 6 Let X1 = X2 = {0, 1} and π1, π2 and
π3 on X1,X2 and X1 × X2 be defined by Table 10.
Sequence π1, π2, π3 is min-perfect, since


π1 .TG π2 = min(π1, π2) = π1 /TG π2


and


π1.TG π2.TG π3 = min(π1, π2) = π3 = π1/TG π2/TG π3,


but not, for example, product-perfect, since


π1 .Tp π2 .Tp π3 = π1 · π2 6= π3 = π1 /Tp π2 /Tp π3.
3


6Counterexamples can be found in [11].







Table 10: Distributions forming min-perfect sequence
X1 0 1
π2 1 .5


X2 0 1
π2 1 .5


π3 X2 0 1
X1 = 0 1 .5
X1 = 1 .5 .5


The following two lemmata, proven in [11], will be
used for proofs of further assertions.


Lemma 5 Let T be a continuous t-norm. The se-
quence π1, π2, . . . , πm is T -perfect, if and only if the
pairs of distributions (π1 .T · · · .T πk−1) and πk are
projective for all k = 2, 3, . . . ,m.


Lemma 6 Let T be a continuous t-norm and
π1, π2, . . . , πm be a generating sequence of low-
dimensional possibility distributions. Then π1.T · · ·.T
πm is an extension of π1 .T · · · .T πk for all k =
1, . . . , m− 1.


The following characterisation theorem expresses one
of the most important results concerning perfect se-
quences. It says they compose into multidimensional
distributions that are extensions of all the distribu-
tions from which the joint distribution is composed.


Theorem 3 The sequence π1, π2, . . . , πm is perfect iff
all the distributions π1, π2, . . . , πm are marginal to
distribution π1 .T π2 .T . . . . πm.


Proof. Let π1, π2, . . . , πm be a perfect sequence of pos-
sibility distributions of XK1 , XK2 , . . . , XKm , respec-
tively. Let us consider an arbitrary k ∈ {1, . . . , m−1}
and denote ρk = π1 .T · · · .T πk. Since, due to the
perfectness of π1, . . . , πk,


ρk = π1 /T · · · /T πk,


it is evident that ρk is an extension of πk on
XK1∪···∪Kk . From this fact and from Lemma 6 we
will immediately obtain that π1 .T · · · .T πm is an
extension of πk, too.


Let for all i = 1, . . . ,m, πi be marginal distributions
of π1 .T · · · .T πm. Let us consider an arbitrary i ∈
{1, . . . , m}. Projectivity must hold for πi and π1 .T


· · ·.T πi−1 as the latter distribution is also a marginal
of π1 .T · · · .T πm (cf. Lemma 6) . Therefore, from
Lemma 5 we immediately obtain that the sequence
π1, . . . , πm of possibility distributions is perfect, which
completes the proof. 2


Now, we can approach formulation of the result con-
cerning sufficient conditions for existence of an exten-
sion of the given set of low-dimensional distributions,


as we promised in Paragraph 3.3. Before doing that,
we need to recall what the running intersection prop-
erty means and what the assertion is of the lemma
concerning the relationship between this property and
perfectness.


A sequence of sets K1, K2, . . . ,Kn is said to meet run-
ning intersection property (RIP) if


∀i = 2, . . . , n ∃j(1 ≤ j < i)


(Ki ∩ (K1 ∪ . . . ∪Ki−1)) ⊆ Kj .


Lemma 7 If π1, π2, . . . , πm is a sequence of pair-
wise projective low-dimensional distributions such
that K1, . . . , Km meets RIP, then this sequence is T -
perfect for any continuous t-norm T .


Proof. Let us prove the assertion using induction. For
i = 2


π1 .T π2 = π1 /T π2


follows from Lemma 4. To get


π1 .T . . . .T πi = π1 /T . . . /T πi


for a general i > 2 we need a projectivity of πi and
π1 .T . . ..T πi−1. According to RIP there is j < i such
that


Ki ∩ (K1 ∪ . . . ∪Ki−1) ⊂ Kj .


Using the inductive assumption, the theorem holds for
i− 1, and therefore πj , which is projective with πi, is
a marginal of π1 .T . . . .T πi−1 for an arbitrary con-
tinuous t-norm T . Hence, πi must also be projective
with π1 .T . . . .T πi−1 and therefore, due to Lemma 4
and the inductive assumption,


π1 .T . . . .T πi = π1 /T . . . /T πi.


for any continuous T . 2


Therefore we can conclude:


Theorem 4 Let S = {πK ,K ∈ K} be a system of
pairwise projective low-dimensional possibility distri-
butions. If there exists a permutation i1, . . . , im of
indices 1, . . . ,m such that Ki1 , . . . , Kim meets RIP,
then, for any continuous T , there exists a T -product
extension


πi1 .T πi2 . . . . .T πim


of these distributions.


Proof of this theorem is an immediate consequence
of Theorem 3 and Lemma 7.


5 Conclusions


We have introduced a possibilistic marginal problem
analogous to a probabilistic one, (i.e. in a more gen-
eral way than it was done by De Campos and Huete







[3, 4]). We discussed necessary and sufficient con-
ditions, which appeared to be very similar to those
found in the probabilistic framework. On the other
hand, sets of all solutions are generally not convex
(in contrast to the probabilistic framework). A lot of
attention was paid to T -product extensions — distri-
butions that can be obtained from the marginals by
adopting a (conditional) independence requirement.
We found a sufficient condition under which they ex-
ist and described the apparatus for their construction.


Nevertheless, we have shown that there are still many
problems that remain to be solved. One of them is
the problem of a characterization of the sets of all
solutions. Another question is, in fact, closely con-
nected with the first one: how to solve a possibilistic
marginal problem if the T -product extension does not
exist. And the third task may be to study the relation-
ship between T -product extensions and properties of
some suitable measures of entropy in the possibilistic
framework.
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[14] J. Vejnarová, “Conditional independence rela-
tions in possibility theory.” Int. J. Uncertainty,
Fuzziness and Knowledge-Based Systems 8 (2000),
253–269.
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