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Abstract

In this paper we study conditional independence
structures arising from conditional probabilities and
lower conditional probabilities. Such models are
based on notions of stochastic independence apt to
manage also those situations where zero evaluations
on possible events are present: this is particularly cru-
cial for lower probability. The “graphoid” properties
of such models are investigated, and the representa-
tion problem of conditional independence structures is
dealt with by generalizing classical separation criteria
for undirected and directed acyclic graphs.

Keywords. Graphical models, conditional indepen-
dence, lower probability, separation criteria.

1 Introduction

Graphs are widely used in probability, statistics and
artificial intelligence to represent conditional inde-
pendence structures induced by uncertainty measures
([9], [10], [16], [17], [18], [22]). Therefore graphi-
cal models are based on conditional independence,
but there is generally no agreement on the choice of
the formal relevant definition, because sometimes the
intuitive meaning is not caught. Almost all defini-
tions are generalizations of the classical definition of
stochastic independence, and so their framework is
the Kolmogorovian approach to conditional probabil-
ity.

It is well known that such formalization of stochastic
independence presents some counterintuitive aspects:
for example, an event A of zero probability is stochas-
tically independent of itself, while it is natural to re-
quire that every event is dependent on itself. Essen-
tially, critical situations arise when 0 (or 1) probabili-
ties on possible events are involved. To overcome such
controversial situations other definitions of stochas-
tic independence have been introduced [4], [5] in the
most general framework of conditional probability as

given by de Finetti [12], Krauss [15], Dubins [13] (see
Section 2). This approach to conditional probability
allows to manage zero probability (while in the usual
approach the classic definition of probability of a con-
ditional event E|H does not make sense if P (H) is
zero) and direct partial assessments through the con-
cept of coherence, and it gives the possibility of ex-
tending any coherent assessment (for an overview, see
for example [6]). The formalization of stochastic inde-
pendence between two possible events A and B given
in [5] implies logical independence of A and B.

In Section 3 the main properties of this definition are
recalled also in the case of random variables (see [20]).
In particular, the attention is focused on checking
graphoid properties (see [17]).

In [7] the authors extend stochastic independence defi-
nition of two events to more general uncertainty func-
tion: lower (upper) conditional probabilities, where
the problem of 0 (or 1) values is even more crucial.

In this paper the definition given in [7] is extended
to conditional independence and it is studied the case
of random variables. Moreover, the closure of such
independence models with respect to graphoid prop-
erties is checked. It is proved that the two kinds of
conditional independence models – induced by lower
probability and probability – are closed with respect
to the following properties: decomposition and its re-
verse, weak union, contraction and its reverse, inter-
section and its reverse. Notice that such structures
are not closed with respect to symmetry.

One of the aims of this paper is to represent graphi-
cally these conditional independence structures. The
classical separation criteria for undirected graphs [16]
and the d-separation [17] for directed graphs are not
completely apt to represent our conditional indepen-
dence models (as we have shown in [19] by some ex-
amples). So in Section 6 a generalization of these
criteria is presented. However, both these “general-
ized criteria” induce graphoid structures, so they are



not apt to describe models not (necessarily) closed
with respect to symmetry (called a-graphoid): so we
introduce another criterion able to represent not sym-
metric statements.

2 Conditional probability

Let A be a finite Boolean algebra and denote A0 =
A \ {∅}, where ∅ is the impossible event.

Definition 1 Given a Boolean algebra A, a condi-
tional probability on A×A0 is a function P (·|·) into
[0, 1], which satisfies the following conditions:

(i) P (·|H) is a finitely additive probability on A for
any H ∈ A0

(ii) P (H|H) = 1 for every H ∈ A0

(iii) P (E ∧ A|H) = P (E|H)P (A|E ∧ H), whenever
E, A ∈ A and H, E ∧H ∈ A0

Note that (iii) reduces, when H = Ω (where Ω is the
certain event), to classic “chain rule” for probability

P (E ∧A) = P (E)P (A|E).

In the case P0(·) = P (·|Ω) is strictly positive on
A0, any conditional probability can be derived as a
ratio by this unique “unconditional” probability P0.
As proved in [15] in all other cases to set a similar
representation we need to resort to a finite family
P = {P0, . . . , Pk} of unconditional probabilities:
- every Pα is defined on a proper subalgebra (taking
A0 = A) Aα = {E ∈ Aα−1 : Pα−1(E) = 0};
- for each event B ∈ A0 there exists an unique α such
that Pα(B) > 0 and for every conditional event E|H
it holds P (E|H) = Pα(E∧H)

Pα(H) with Pα(H) > 0.

The class of probabilities P = {P0, . . . , Pk} is said to
agree with the conditional probability P (·|·).

Such theory of conditional probability allows to han-
dle also partial probability assessment on arbitrary
set of conditional events F = {E1|H1, . . . , En|Hn}
through the coherence: an assessment is coherent if
it is the restriction of a conditional probability de-
fined on A × A0, where A is the algebra generated
by {E1,H1, . . . , En,Hn}. A characterization of co-
herence has given in [2]:

Theorem 1 Let F be an arbitrary finite family of
conditional events and A0 denotes the set of atoms
Cr generated by the events E1,H1, . . . , En,Hn. For a
real function P on F the following two statements are
equivalent:
(i) P is a coherent conditional probability on F ;

(ii) there exists (at least) a class of unconditional
probabilities {P0, P1, . . . Pk}, with P0 on A0 and Pα

(α > 0) being defined on Aα = {E ∈ Aα−1 :
Pα−1(E) = 0}, such that for any Ei|Hi ∈ F there
is a unique Pα, with Pα(Hi) > 0 , and

P (Ei|Hi) =

∑

Cr⊆Ei∧Hi

Pα(Cr)

∑

Cr⊆Hi

Pα(Cr)
.

The class of probabilities P = {P0, . . . , Pk} agreeing
with the given coherent assessment P is not unique.
But, fixed one class P = {P0, . . . , Pk} for each event
H there is a unique α such that Pα(H) > 0 and α is
said zero-layer of H according to P, and it is denoted
by the symbol ◦(H). In particular, for every proba-
bility we have ◦(Ω) = 0, while we define ◦(∅) = ∞.
The zero-layer of a conditional event E|H is defined
(see [5]) as

◦(E|H) = ◦(E ∧H)− ◦(H).

The crucial role of zero-layers is recalled in Section 3.

3 Logical independence

In the sequel, a possible event denotes an event dif-
ferent from ∅ and Ω. Two distinct non-trivial parti-
tions E1 and E2 of Ω are logically independent if the
“finer” partition E (called also set of atoms) generated
by them, coincides with the set of all possible logical
products between the events of E1 and E2, i.e.

E = E1×E2 = {C = C1∧C2 6= ∅ : C1 ∈ E1 ; C2 ∈ E2}.

Hence, in such case the cardinality |E| of E is equal to
|E1| · |E2|. A logical constraint exists between two par-
titions if they are not logical independent, i.e. some
logical products of the kind C1 ∧ C2 is not possi-
ble. In particular, the events A and B are logi-
cal independent if the partitions E1 = {A,Ac} and
E1 = {B, Bc} are logical independent, so the set of
atoms is {A ∧B, A ∧Bc, Ac ∧B, Ac ∧Bc}.

Analogously, the partitions E1, . . . , En are logically in-
dependent if the set of atoms E generated by Ei’s is
obtained as logical product E = E1 × . . . × En, i.e.
C1 ∧ . . . ∧ Cn 6= ∅ with Ci ∈ Ei (i = 1, . . . , n).

Obviously, if n partitions are logically independent,
then arbitrary subsets of these partitions are logically
independent too. However, n partitions E1, . . . , En are
not necessarily logically independent, even if every
subset of n−1 partitions are logically independent; it
follows that there is some logical constraint of the kind
C1∧ . . .∧Cn = ∅, with Ci ∈ Ei. For example, suppose
E1 = {A,Ac}, E2 = {B, Bc} and E3 = {C, Cc} are
three distinct partitions of Ω with A∧B ∧C = ∅. All



the couples of these partitions are logically indepen-
dent, but the partition E1 is not logically independent
from the partition E2×E3 (i.e. generated by {E2, E3}).
The same conclusion is reached replacing E1 by E2 or
E3.

Given n partitions and a logical constraint among
them, it is possible to find the minimal subset
{E1, . . . , Ek} of partitions generating such constraint:
it means that E1, . . . , Ek are not logical independent,
i.e. there exists at least a combination of atoms, with
Ci ∈ Ei, such that C1 ∧ . . . ∧ Ck = ∅, while for all
j = 1, . . . , k we have C1∧. . . Cj−1∧Cj+1∧. . .∧Ck 6= ∅.
This does not imply that all the subsets of the k par-
titions are logically independent, because there could
be another different logical constraint involving some
subset.

We will say that such set of partitions {E1, . . . , Ek}
is the minimal set generating the given logical con-
straint.

4 Conditional independence for
probabilities

It is well known that the classical definition of stochas-
tic independence of two events

P (A ∧B) = P (A)P (B) (1)

gives rise to counter-intuitive situations when one of
the events has probability 0 or 1. For instance an
event A with P (A) = 0 is stochastically independent
of itself, while it is natural (due to the intuitive mean-
ing of independence) to require for any event to be
dependent on itself. Other classical formulations are

P (A|B) = P (A) (2)

and
P (A|B) = P (A|Bc), (3)

that are equivalent to (1) for events such that the
probability of B is different from 0 and 1, but in
that “extreme” cases (without positivity assumption)
they may even lack meaning in the Kolmogorovian
approach to conditional probability.

Anyway, also considering the stronger formulation (3)
in the more general framework of de Finetti [12] some
critical situations continue to exist.

Example 1 Consider two incompatible possible
events A and B, i.e. A ∧ B = ∅. Let P be a
conditional probability such that P (A|Bc) = 0.
Obviously condition (3) holds, since P (A|B) must
be 0 because of the given logical relation. Note that
the previous consideration is valid for P (B) ∈ [0, 1].
Therefore, according to all the classical formulations

A and B are stochastically independent, although
they are logically dependent.

For this reason other different definitions of stochastic
independence have been proposed, we consider that
given in [5] in the most general framework of coherent
probability assessment and extended to conditional
independence in [20]. In the sequel, to avoid cum-
bersome notation, the conjunction symbol ∧ among
events is omitted.

Definition 2 Given a coherent conditional proba-
bility P , defined on a family F containing D =
{A|BC,A|BcC, Ac|BC, Ac|BcC}, A is conditionally
independent of B given C with respect to P if both
the following conditions hold:

(i) P (A|BC) = P (A|BcC) ;

(ii) there exists a class {Pα} of probabilities agreeing
with the restriction of P to the family D, such that
◦(A|BC) = ◦(A|BcC) and ◦(Ac|BC) = ◦(Ac|BcC) .

Remark 1 Even if condition (ii) may give rise to
different zero-layers (corresponding to different agree-
ing classes), nevertheless what is essential is that they
satisfy the two equalities corresponding to the condi-
tioning event of D.

To distinguish this notion of conditional independence
from the classic one we call it cs-independence and
denote by the symbol ⊥⊥cs.

The definition of cs-independence coincides with the
formulations (1), (2) and (3), when P (A|BC) and
P (B|C) are values on (0, 1), while P (C) must be
greater than 0.

Example 1 (continued) – It is easy to check, directly
by definition, that the event A is not cs-independent
of B, in fact

◦(A|B) = ◦(AB)− ◦(B) = ◦(∅)− ◦(B) = ∞,

while being ABc = A and Bc possible events, the
zero-layer ◦(A|Bc) = ◦(A)− ◦(Bc) is finite.

In general, the following result has been proved in [5]
and for the conditional case in [19]:

Theorem 2 Let AC, BC, BcC be possible events. Let
P be a coherent conditional probability such that
A⊥⊥csB|C [P ], then A and B are logically independent
(i.e., none of the events ABC, ABcC, AcBC,AcBcC
is impossible).

In the aforementioned papers there is also a theorem
characterizing stochastic independence of two logi-
cally independent events A and B in terms of proba-
bilities P (B|C), P (B|AC) and P (B|AcC), giving up
any direct reference to the zero-layers.



Indeed, in [20] the definition of cs-independence has
been extended to the case of finite sets of events.

Definition 3 Let E1, E2, E3 be three different par-
titions od Ω such that E2 is not trivial. The
partition E1 is stochastically independent of E2

given E3 with respect to a coherent conditional
probability P (in symbols E1⊥⊥csE2|E3 [P ]) iff
Ci1⊥⊥csCi2 |Ci3 [P ] for every Ci1 ∈ E1, Ci2 ∈ E2,
Ci3 ∈ E3 such that Ci2 ∧ Ci3 6= ∅.

In the quoted paper the following result has been
proved

Theorem 3 Let E1, E2 be two partitions of Ω and P
be a coherent conditional probability. Then

E1⊥⊥csE2|D [P ] =⇒ A⊥⊥csB|D [P ]

for every A logically dependent on E1, and B logically
dependent on E2.

By the previous result also conditional independence
for finite algebras A1,A2 have been characterized: A1

is cs-independent of A2 given a partition E if the
atoms E1 of A1 are cs-independent of E2, the atoms
of A2, conditionally to every event in E , i.e.

A1⊥⊥csA2|E [P ] ⇐⇒ E1⊥⊥csE2|E [P ].

Starting from the previous considerations the case of
random variables can be dealt. Let X = (X1, . . . , Xn)
be a random vector with values in RX ⊆ IRn. The
partition E of the sure event Ω generated by X is
denoted by EX = {X = x : x ∈ RX}.

Definition 4 Let (X,Y, Z) be a finite discrete ran-
dom vector with values in R ⊆ RX×RY ×RZ and EX ,
EY , EZ the partitions generated by X,Y and Z, respec-
tively. Let P be a coherent conditional probability on
F containing {A|BC : A ∈ EX , B ∈ EY , C ∈ EZ}:
then X is stochastically cs-independent of Y given Z
with respect to P (in symbol X⊥⊥csY |Z [P ]) iff

EX⊥⊥csEY |EZ [P ].

Note that Definition 4 does not require the classical
assumptions: R = RX ×RY ×RZ (logical constraints
among the variables cannot be considered); the prob-
ability assessments are complete and positive.

The set MP of stochastic cs-independence state-
ments induced by P of the form XI⊥⊥csXJ |XK ,
where I, J and K are three disjoint subsets, is
called cs-independence model. Every stochastic
cs-independence model induced by P is closed with
respect to the properties listed below ([20]). Every
property can be interpreted as the requirement that
MP is closed under respective “inference rules”.

Decomposition property
XI⊥⊥cs[XJ , XK ]|XW [P ] =⇒ XI⊥⊥csXJ |XW [P ];

Reverse decomposition property
[XI , XJ ]⊥⊥csXW |XK [P ] ⇒ XI⊥⊥csXW |XK [P ];

Weak union property

XI⊥⊥cs[XJ , XK ]|XW [P ] ⇒ XI⊥⊥csXJ |[XW , XK ] [P ];

Contraction property

XI⊥⊥csXW |[XJ , XK ] [P ] & XI⊥⊥csXJ |XK [P ] ⇒
XI⊥⊥cs[XJ , XW ]|[XK ] [P ];

Reverse contraction property

XI⊥⊥csXW |[XJ , XK ] [P ] & XJ⊥⊥csXW |XK [P ] ⇒
[XI , XJ ]⊥⊥csXW |[XK ] [P ];

Intersection property

XI⊥⊥csXJ |[XW , XK ] [P ] & XI⊥⊥csXW |[XJ , XK ] [P ] ⇒

XI⊥⊥cs[XJ , XW ]|[XK ] [P ];

Reverse intersection property

XI⊥⊥csXW |[XJ , XK ] [P ] & XJ⊥⊥csXW |[XI , XK ] [P ] ⇒

[XI , XJ ]⊥⊥csXW |[XK ] [P ].

Hence, these models satisfy all graphoid properties
(see [17], [18]) except symmetry property

XI⊥⊥csXJ |XK [P ] ⇒ XJ⊥⊥csXI |XK [P ]

and reverse weak union property

[XJ , XW ]⊥⊥csXI |[XK ] [P ] ⇒ XJ⊥⊥csXI |[XW , XK ] [P ].

In [19] also models (called a-graphoid) closed with re-
spect to reverse weak union (but not necessarily with
respect to symmetry) have been classified. The possi-
ble lack of symmetry is not counterintuitive, as ex-
plained in [5]: for example the validity of A⊥⊥csB
means intuitively that the occurrence of B with posi-
tive probability does not “influence” the probability of
A; but it does not necessarily entail, conversely, that
the occurrence of the “unexpected” (zero probability)
event A should “influence” B. On the other hand,
when the probabilities of A and B are in (0, 1), if
A⊥⊥csB, then the symmetric statement B⊥⊥csA holds.
So when the probability P is strictly positive, the
cs-independence model induced by P is closed with
respect to graphoid properties: symmetry, decompo-
sition, weak union, contraction and intersection.

5 Conditional independence for lower
probabilities

Extending a given coherent conditional probability as-
sessment to a new event we do not necessarily get a
unique value, but a bounded interval (for more details
see [3] and for a relevant discussion see [8]), and the



bounds are called lower and upper conditional proba-
bilities, respectively (other authors prefer to speak of
imprecise probabilities, see [14]).

Given an arbitrary finite family F of conditional
events, a function P on F is a coherent lower con-
ditional probability if there exists a non-empty family
of conditional probabilities P = {P (·|·)} on F (domi-
nating family) whose lower envelope is P , i.e., for any
E|H ∈ F ,

P (E|H) = min
P

P (E|H).

The element P of the dominating family P such that
P (Ei|Hi) = P (Ei|Hi) for Ei|Hi ∈ F is called i-
minimal probability and its agreeing class P (see Sec-
tion 2) is called i-minimal class [7].

It is well known that upper conditional probabilities
P (E|H) = maxP P (E|H) (upper envelope of a class
of conditional probabilities) are the dual functions of
lower probabilities, i.e. P (E|H) = 1 − P (Ec|H). By
the previous transformation we can deal with both un-
certainty functions in an unified way, so in the sequel
we refer only to lower conditional probabilities.

The important role in inferential processes of impre-
cise probabilities leads to a generalization of the no-
tion of stochastic independence. This topic is con-
troversial, in fact there are several different formula-
tions [10], [11], which essentially aim at being gen-
eralizations of formulations (1), (2), (3) of stochastic
independence. Nevertheless, in the context of lower
probabilities the role of zero values is even more del-
icate and some authors, as for example Cozman [10],
require the positivity condition to avoid the related
problems (even if he claims “future research must in-
vestigate the consequences of abandoning the positiv-
ity condition”).

In [7] a definition of independence for lower probabil-
ities, which is able to handle zero lower probability
values, is given.

Definition 5 Given a coherent lower conditional
probability P , defined on a family F containing D =
{A|B, A|Bc, Ac|B,Ac|Bc}, A is independent of B
with respect to P (in symbols A⊥⊥?

csB [P ]) if there ex-
ists a dominating class P such that, for every P ∈ P,
it holds A⊥⊥csB [P ].

The latter requirement of Definition 5 can be limited
only to i-minimal probabilities, for any event in F .

Remark 2 Definition 5 requires only the existence of
a class satisfying independence condition. In other
words, it is not required that different dominating
classes induce the same independence statements.

More details on the suitability of referring the inde-

pendence to a class of probabilities generating a given
lower conditional probabilities are in [7].

Moreover, in the aforementioned paper the main prop-
erties of this definition have been deepen and, in par-
ticular, the validity of the following implication is
proved

A⊥⊥?
csB [P ] =⇒ P (A|B) = P (A|Bc) = P (A). (4)

Essentially, the statement A⊥⊥?
csB [P ] means that

A⊥⊥csB [P ], for every P belonging to (at least one)
dominating class. Also in the case of lower probabili-
ties, cs-independence implies logical independence.

Definition 5 can be extended easily to conditional in-
dependence.

Definition 6 Given a coherent lower conditional
probability P , defined on a family F containing D =
{A|BC, A|BcC, Ac|BC, Ac|BcC}, A is conditionally
independent of B given C with respect to P (in sym-
bols A⊥⊥?

csB|C [P ]) if there exists a dominating class
P such that, for every P ∈ P, it holds A⊥⊥csB|C [P ].

Following the line of the proof in [7], we get

A⊥⊥?
csB|C ⇒ P (A|BC) = P (A|BcC) = P (A|C) (5)

Definition 6 can be extended to finite sets of events,
as done in Section 4 for probabilities:

Definition 7 Let E1, E2, E be three finite partitions
of Ω. Given a coherent lower conditional proba-
bility P , we say that E1 is stochastically indepen-
dent of E2 given E with respect to P (in sym-
bols E1⊥⊥?

csE2|E [P ]) iff there exists a dominating
class P such that, for every P ∈ P, it holds
Ci1⊥⊥?

csCi2 |Ci3 [P ] for every Ci1 ∈ E1 , Ci2 ∈ E2 ,
Ci3 ∈ E such that Ci2 ∧ Ci3 6= ∅.

From Theorem 3 and Definition 6 it follows that given
two different non trivial partitions E1, E2 of Ω and a
lower probability P , then

E1⊥⊥?
csE2|D [P ] =⇒ A⊥⊥?

csB|D [P ]

for every A and B logically dependent on E1, E2, re-
spectively. Therefore, a finite algebra A1 is cs-inde-
pendent of another finite algebra A2 if the same in-
dependence relation is valid between their partitions,
i.e.

A1⊥⊥?
csA2|E ⇐⇒ E1⊥⊥?

csE2|H for each H ∈ E .

Starting from the previous considerations, the case of
random variables can be faced also in this framework.

Definition 8 Let (X, Y, Z) be a finite discrete ran-
dom vector with values in R ⊆ RX × RY × RZ and
EX , EY , EZ the partitions generated by X,Y and Z,



respectively. Let P be a coherent lower conditional
probability, X is stochastically cs-independent of Y
given Z with respect to P (in symbol X⊥⊥csY |Z [P ])
iff

EX⊥⊥?
csEY |EZ [P ].

Since conditional independence for lower probabilities
P is related to a dominating class P, we refer to P a
set of conditional cs-independence statements induced
by P .

¿From the definition of conditional independence for
lower probabilities and the results presented in Sec-
tion 3, we get the following result

Theorem 4 Let MP be a cs-independence model in-
duced by the lower conditional probability P , then MP

is closed with respect to decomposition property and
its reverse, weak union property, contraction property
and its reverse, intersection property and its reverse.

6 Graphical representation of
independence structures

Graphical models have their origin in several areas:
artificial intelligence, probability and statistics. Their
applicability is due to two main factors: graphical
visualization of independence statements, which fa-
cilitates communication between field experts and
statistician; secondly, computational complexity re-
duction. In this paper we focus our attention just
on the first aspect: representation of the conditional
cs-independence structures.

Since the usual graphical models are not apt to de-
scribe cs-independence models, we present some no-
tions of graphs slightly different from the usual ones.

An l-graph is a triplet G = (V, E,B), where V is a
finite set of vertices, E is a set of edges defined as a
subset of V ×V (i.e. set of all ordered pairs of distinct
vertices), and the family B = {B : B ⊆ V } of subsets
of vertices.

The vertices are represented by circles, and each B ∈
B by a box enclosing those circles corresponding to
vertices in B.

Definition of l-graph differs from that of graph (see
[16], [17]), since our interest for B is to gather the sets
of variables linked by some logical constraint. More
precisely, every vertex v ∈ V or subset I ⊆ V is as-
sociated to a variable Xv or to a random vector XI ,
respectively, and a box B = {v : v ∈ J} visualizes
the minimal set of random variables {Xv : v ∈ J}
whose partitions generate the given logical relation
(see Section 3).

Consider the l-graph in Figure 1, which has no edges

B

1 2

3

4

Figure 1: Graphical representation of variables linked
by a logical constraint

The box B = {1, 2, 3} denotes a logical component
and represents a logical relation among the variables
X1, X2, X3: it could be, for example, that the event
{X1 = 1, X2 = 0, X3 = 0} is not possible. The box
B is used to indicate where the logical constraint is
localized.

An edge (u, v) ∈ E is called undirected if also (v, u) ∈
E; whereas an edge (u, v) such that its “opposite”
(v, u) is not in E is called directed. An undirected
edge (u, v) is represented by u− v, whereas u → v is
used for a directed edge. If an l-graph has only undi-
rected edges, it is called undirected l-graph, while if
all edges are directed, the graph is said to be directed.
In directed l-graphs, if u → v, then u is said to be a
parent of v and v a child of u.

A path of length n from u to v is a sequence
u = u1, . . . , un = v of vertices such that either
(ui, ui+1) ∈ E and (ui+1, ui) 6∈ E or (ui+1, ui) ∈ E
and (ui, ui+1) 6∈ E for i = 1, . . . , n− 1.

A directed path of length n from u to v is a sequence
u = u1, . . . , un = v of vertices such that (ui, ui+1) ∈ E
and (ui+1, ui) 6∈ E for i = 1, . . . , n− 1.

If there is a path from u to v, we say that u leads to
v, and we denote it as u 7→ v. An n-cycle is a path
of length n that begins and ends in the same vertex
u1 = un. A directed l-graph is acyclic if it contains
no cycles.

The vertices u such that u 7→ v and there is no path
from v to u, are the ancestors an(v) of v; the descen-
dants ds(u) of u are the vertices v such that u 7→ v
and there is no path from v to u.

6.1 A separation criterion for undirected
l-graph

To represent conditional cs-independence relations,
we need to introduce a “rule”, called separation cri-
terion, that allows to read the relations directly from
l-graphs.

Definition 9 Let V1, V2, S be three disjoint subsets of
V . The set V1 is u-separated from V2 by S in the l-
graph G = (V, E,B) if the following conditions hold:
(u1) every path from u ∈ V1 to v ∈ V2 goes through a



vertex in S
(u2) there is no Bi ∈ B such that Bi ⊆ V1 ∪ V2 ∪ S,
and both sets Bi ∩ V1 and Bi ∩ V2 are not empty.

The condition (u2) can be rewritten as follows:
- ∀B ∈ B s.t. B ⊆ V1 ∪ V2 ∪ S one has either

B ∩ V1 = ∅ or B ∩ V2 = ∅;
- ∀B ∈ B s.t. B ⊆ V1 ∪ V2 ∪ S one has either

B ⊆ V1 ∪ S or B ⊆ V2 ∪ S.

The statement “the set of vertices V1 is u-separated by
V2 given S” in an l-graph G = (V,E,B) is denoted as
(V1, V2|S)u

G. The difference between u-separation cri-
terion and the classical one [16] is established by con-
dition (u2), where logical components are considered.
Therefore, to detect the properties of u-separation,
we must check the graphoid properties verified by the
relation X⊥⊥BY |Z:

∀B ∈ B B ⊆ X∪Y ∪Z =⇒ B ⊆ X∪Z or B ⊆ Y ∪Z.

Theorem 5 The relation X⊥⊥BY |Z is a graphoid.

Proof. We must prove that the relation verifies
symmetry, decomposition, weak union, contraction
and intersection properties. Symmetry is trivial.
Suppose now X⊥⊥BY ∪W |Z. Any B ⊆ X∪Y ∪Z ∈ B
is such that B ⊆ X ∪W ∪ Y ∪ Z and by assumption
B ⊆ X ∪ Z or B ⊆ W ∪ Y ∪ Z, then being W and
Y ∪ Z disjoint we get B ⊆ X ∪ Z or B ⊆ Y ∪ Z.
Therefore, the statement X⊥⊥BY ∪ W |Z implies
X⊥⊥BY |Z, i.e. decomposition property is satisfied.
Moreover, for any B ⊆ X∪Y ∪W ∪Z, by assumption
it follows B ⊆ Y ∪W∪Z or B ⊆ X∪Z ⊆ X∪W∪Z, so
weak union property X⊥⊥BY ∪W |Z ⇒ X⊥⊥BY |W ∪Z
is satisfied.
Now suppose that X⊥⊥BW |Z and X⊥⊥BY |W ∪ Z,
so every B ⊆ X ∪ Y ∪ W ∪ Z is such that
B ⊆ Y ∪W ∪Z or B ⊆ X ∪W ∪Z, the latter implies
B ⊆ X ∪ Z or B ⊆ W ∪ Z by second assumption.
Therefore, X⊥⊥BW |Z and X⊥⊥BY |W ∪ Z imply
X⊥⊥BY ∪W |Z, i.e. contraction property holds.
Suppose now that X⊥⊥BW |Y ∪ Z and
X⊥⊥BY |W ∪ Z, if B ⊆ X ∪ Y ∪ W ∪ Z then
B ⊆ X ∪ Y ∪ Z or B ⊆ W ∪ Y ∪ Z for the first
assumption, B ⊆ X ∪ W ∪ Z or B ⊆ Y ∪ W ∪ Z
for the second assumption. To prove the intersection
property (X⊥⊥BY |W ∪ Z and X⊥⊥BW |Y ∪ Z imply
X⊥⊥BY ∪ W |Z), we must verify that B ⊆ X ∪ Z or
B ⊆ Y ∪ W ∪ Z. The two assumptions imply that
B ⊆ Y ∪W ∪ Z or the validity of both the relations
B ⊆ X ∪W ∪ Z and B ⊆ X ∪ Y ∪ Z; in the second
case B ⊆ X ∪ Z.

It is well known that classical vertex separation cri-
terion for undirected graphs satisfies graphoid prop-
erties [16], so by the previous result we can conclude

that also vertex u-separation criterion verify the same
properties.

Corollary 1 The vertex u-separation verifies gra-
phoid properties.

Remark 3 Composition property

(X,Y |Z)u
G & (X, W |Z)u

G =⇒ (X,Y ∪W |Z)u
G

need not hold. Obviously, the hypotheses imply that
every path going from X to Y ∪W is blocked by Z, in
fact the classical vertex separation verifies such prop-
erty. But, the second condition (u2) characterizing
u-separation criterion can fail.

V1 S

B

3
V

V2

Figure 2: Counter-example for composition property

In fact, it is enough to consider B ∈ B such that
B∩Vi 6= ∅ for every i = 1, 2, 3 and B ⊆ V1∪V2∪V3∪S.
Hence, B ∩ (V2 ∪ V3) 6= ∅ and ¬((V1, V2 ∪ V3|S)u

G).
On the other hand, B 6⊆ V1 ∪ V2 ∪ S and B 6⊆
V1 ∪ V3 ∪ S. The mentioned situation is illustrated in
Figure 2, where the ovals represent the sets of vertices.
Given a cs-independence models M, we say that
the l-graph G represents M if (V1, V2|S)u

G implies
XV1⊥⊥?

csXV2 |XS ∈ M. Actually, stochastic indepen-
dence models can violate composition property: we
may have X⊥⊥csXj [P ] for j ∈ J while the statement
X⊥⊥csXJ [P ] is not valid. It is well known that sepa-
ration criteria in [16], [17] do not reflect such feature,
in fact they satisfy composition property.

Now we just show a simple example to better under-
stand the proposed criterion.

Example 2 Consider the random vector
(X1, X2, X3), where the variables Xi (i = 1, 2, 3) are
binary and X1 and X2 are logically linked by the
constraint: the event {X1 = 1} ∧ {X2 = 1} (denoted
also as {X1 = 1, X2 = 1}) is impossible. Let M be
the independence model formed by the statements
X2⊥⊥?

csX3, X3⊥⊥?
csX2, X2⊥⊥?

csX3|[X1], X3⊥⊥?
csX2|[X1].

M can be represented “completely” thanks to u-
separation criterion (i.e. all the statements and only
those inM are represented) by the undirected l-graph
drawn in Figure 3.
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2

3

Figure 3: Graphical representation of M.

The logical constraint between X1 and X2 is visual-
ized in the l-graph by the logical component B. Oth-
erwise the graph would represent inexistent indepen-
dence statement. Note that M cannot be represented
completely neither by directed acyclic graphs using d-
separation (or its generalization called D-separation
[17]).

The cs-independence model M can be induced, for
example, by the following probability P

P (X2 = 1, X3 = 1) = P (X2 = 1, X3 = 0) = 1
6 ,

P (X1 = 0, X2 = 0, X3 = 1) = 1
3

P (X1 = 0, X2 = 0, X3 = 0) = 1
3

The computations to check that P actually induces
the statements in M are trivial and there is no need
to specify the zero-layers of {X1 = 1, X3 = 1} and
{X1 = 1, X3 = 0}.

6.2 Separation criteria for directed acyclic
l-graph

In [19] two different separation criteria for directed
acyclic l-graph have been given to represent cs-
independence models. The first called dl-separation
is a generalization of d-separation criterion [17] ob-
tained introducing the notion of logical components
as done for undirected l-graphs. Before introducing
the new separation criterion, we recall the classical
definition of blocked path given in [17].

Definition 10 Let G be an acyclic directed graph. A
path u1, . . . , um in G is blocked by a set of vertices S ⊆
V , whenever there exists a triplet of connected vertices
u, v, w such that of the following condition holds:

1. either u → v, v → w or w → v, v → u, and
v ∈ S

2. v → u, v → wE and v ∈ S

3. u → v, w → v and v ∪ ds(v) 6∈ S

The conditions can be illustrated by Figure 4 where
the grey vertices are those belonging to S.

Vertex d-separation criterion requires that every path
going from one set to the other is blocked.

u

v

w

u

v

w

u

v

w

ds(v)

Figure 4: Blocked paths

Our generalization is the following

Definition 11 Let G = (V,E,B) be an acyclic di-
rected l-graph and let V1, V2 and S be three disjoint
set of vertices of V . The set of vertices S dl-separates
V1 from V2 in G (in symbol (V1, V2|S)dl

G), whenever
every path in G from V1 to V2 is blocked by S and the
following condition holds:

(u2) there is no Bi ∈ B such that Bi ⊆ V1 ∪ V2 ∪ S,
and both sets Bi ∩ V1 and Bi ∩ V2 are not empty.

It is immediate to check that the possible boxes Bi in
the three situations of Figure 4 can be formed only by
{u, v} and {v, w}, but cannot be {u,w}.

Example 3 Let Xi (i = 1, 2, 3) be binary
variables such that {X1 = 0, X2 = 0, X3 = 0}
is impossible. Consider the lower conditional proba-
bility P defined as follows

P (X1 = 1|X2 = 1) = 0.2 = P (X1 = 1|X2 = 0)

P (X2 = 1|X1 = 1) = 0.3 = P (X2 = 1|X1 = 0)

P (X3 = 1|X2 = 1) = 0 = P (X3 = 1|X1 = 1)

P (X3 = 1|X2 = 0) = 4
5 , P (X3 = 1|X1 = 0) = 5

8

P (X1 = 1|X3 = 1) = 0 = P (X2 = 1|X3 = 1)

P (X1 = 1|X3 = 0) = 1
3 P (X2 = 1|X3 = 0) = 15

22

Because of the logical constraint the only possible
independence statements induced by P are between
the couples of variables. The given assessment cannot
induce the statements X3⊥⊥?

csX1, X3⊥⊥?
csX2 and their

symmetric because (for i = 1, 2)

P (X3 = 1|Xi = 1) 6= P (X3 = 1|Xi = 0)

P (Xi = 1|X3 = 1) 6= P (Xi = 1|X3 = 0).

On the other hand, we can show that
MP = {X1⊥⊥?

csX2, X2⊥⊥?
csX1}.

is induced by by the i-minimal class

P 1
0 (X1 = 1, X2 = 1, X3 = 0) = 0.06

P 1
0 (X1 = 1, X2 = 0, X3 = 0) = 0.14

P 1
0 (X1 = 0, X2 = 1, X3 = 0) = 0.24

P 1
0 (X1 = 0, X2 = 0, X3 = 1) = 0.56

and P 1
0 is 0 elsewhere, while



P 1
1 (X1 = 1, X2 = 0, X3 = 1) = 0.3

P 1
1 (X1 = 0, X2 = 1, X3 = 1) = 0.5

P 1
1 (X1 = 1, X2 = 1, X3 = 1) = 0.2;

and
P 2

0 (X1 = 1, X2 = 1, X3 = 1) = 0.05
P 2

0 (X1 = 1, X2 = 1, X3 = 1) = 0.05
P 2

0 (X1 = 1, X2 = 0, X3 = 1) = 0
P 2

0 (X1 = 1, X2 = 0, X3 = 0) = 0.1
P 2

0 (X1 = 0, X2 = 1, X3 = 1) = 0.1
P 2

0 (X1 = 0, X2 = 1, X3 = 0) = 0.3
P 2

0 (X1 = 0, X2 = 0, X3 = 1) = 0.4.

It is easy to check that these two classes are minimal
for P and moreover, both imply that X1⊥⊥csX2 and
X2⊥⊥csX1.

MP can be represented by the l-graph in Figure 5.

B
3

1 2

Figure 5: Acyclic directed l-graphs describing MP .

¿From Theorem 5 and from the properties of blocked
path it follows

Corollary 2 Vertex dl-separation satisfies graphoid
properties.

However, dl-separation does not verify composi-
tion property for the same reasons presented for u-
separation. Since dl-separation does not allow to rep-
resent not symmetric statements, we introduce an-
other criterion apt for this aim.

Definition 12 Let G be an acyclic directed l-graph.
A path u1, . . . , un, n ≥ 1 in G is blocked by a set
of vertices S ⊆ V , whenever there exists a triplet of
consecutive vertices w, v, u in the path such that one
of the following three condition holds:

1. u → v → w and v ∈ S (i.e. w, v, u is a reverse
directed path)

2. u ← v → w and v ∈ S

3. u → v ← w and ds(v) 6∈ S

Note that Definition 12 strictly depends on the direc-
tion of the path (see the first condition).

Figure 6 shows a case where the directed path w, v, u
is not blocked (v ∈ S).

v

w

u

Figure 6: Not blocked directed path

The difference between the introduced notion of
blocked path and that used in d-separation criterion
[17] is illustrated by means of Figure 4 and Figure 6.
The path w, v, u on the left of Figure 4 is blocked by
v, while its reverse is represented on Figure 6 is not
blocked by v because of the direction. Hence, the re-
verse path of one blocked is not necessarily blocked
according to our definition, so the blocking path no-
tion does not satisfy symmetric property. The second
and third cases of Definition 12 are like in d-separation
criterion.

Definition 13 Let G be an directed acyclic l-graph
and let U , W and S be three pairwise disjoint set of
vertices of V . We say that U is l-separated from W by
S in G and write symbol (U,W |S)l

G, whenever every
path in G from U to W is blocked by S and moreover,
the following “logical separation” condition holds
(u2) ∀B ∈ B s.t. B ⊆ U ∪ W ∪ S one has either
B ∩ U = ∅ or B ∩W = ∅.

Corollary 3 Vertex l-separation verifies a-graphoid
properties.

Therefore, l-separation helps to represent structures
not necessarily closed with respect to symmetric prop-
erty (as cs-independence models or other models
known in literature see for example [1], [10], [11], [21]).

Example 4 Let X1, X2, X3 be three binary variables.
Consider the lower conditional probability P

P (X1 = 1|X2 = 1, X3 = 1) = 0
P (X1 = 1|X2 = 0, X3 = 1) = 0
P (X2 = 1, X3 = 1) = 0.1
P (X1 = 0, X2 = 1, X3 = 1) = 0.1
P (X1 = 0, X2 = 0, X3 = 1) = 0.1
P (X2 = 1|X1 = 1, X3 = 1) = 0.25
P (X1 = 1|X2 = 1, X3 = 0) = 0.6
P (X1 = 1|X2 = 0, X3 = 0) = 0.6

It is easy to find a dominating class such that the
induced cs-independence model is

M = {X1⊥⊥?
csX2 | X3 [P ]}.



On the other hand, the statement X2⊥⊥?
csX1 | X3 can-

not be induced by P , since

P (X2 = 1|X1 = 1, X3 = 1) = 0.25 6=

6= 0.1
0.1 + 0.1

= 0.5 = P (X2 = 1|X1 = 0, X3 = 1).

The l-graph representing completely M according to
the l-separation criterion is drawn in Figure 7.

32 1

Figure 7: Graphical representation for M.

In fact, the path 1, 3, 2 is blocked by 3, while the path
2, 3, 1 is not blocked by 3 because of the direction.
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