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Abstract

I show that there is a common order-theoretic structure un-
derlying many of the models for representing beliefs in
the literature. After identifying this structure, and study-
ing it in some detail, I show that it is useful: it can be
used to generalise the coherentist study of belief dynam-
ics (belief expansion and revision) by using an abstract
order-theoretic definition of the belief spaces where the
dynamics of expansion and revision take place. Interest-
ingly, many of the existing results for expansion and revi-
sion in the context of classical propositional logic can be
proven in this much more abstract setting, and therefore
remain valid for many other belief models, such as impre-
cise probability models.
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1 Introduction

Many of the models in the literature for representing a sub-
ject’s beliefs (and utilities) turn out to have an interesting
common order-theoretic framework. In this paper, I iden-
tify this framework, which leads me to the introduction
and study ofbelief structures. Roughly speaking, these are
special collections of abstract entities calledbelief models,
which share a number of (order-theoretic) properties.

I want to suggest here that these abstract belief models—
or perhaps some more developed version of them—can
form the basis for, or can at least be helpful in, a gen-
eralised study of the dynamics of epistemic states, which
has received much attention in the AI literature since the
publication of G̈ardenfors’ book [10] on belief change, al-
ready nearly 13 years ago. What can be said about the
dynamics of belief change when the space of epistemic
states in which this dynamics takes place is more general
than that considered by Gärdenfors and others? What hap-
pens when the epistemic states we are interested in are not
sets of sentences in classical proposition logic, but pos-

sibility distributions, sets of probability measures, lower
previsions, preference orderings on horse lotteries, and so
on? Below, I make an attempt at beginning to answer this
question, by only assuming that the space of epistemic
states satisfies the unifying properties of an abstract belief
structure, and in this context deriving a number of inter-
esting general results for belief expansion and belief revi-
sion. These results of course remain valid for the various
instances of belief structures found in the literature.

The order-theoretic structures and notions that I want to
draw attention to in this paper, are defined and studied in
Sections 2, 3 and 5. In Section 4, I motivate the introduc-
tion of these structures by pointing to various important in-
stances in the literature on uncertainty modelling. The rest
of the paper deals with the dynamics of epistemic states:
Section 6 deals with expansion of belief models. Revi-
sion is discussed in Section 7, and in Sections 8 and 9,
which focus on specific ways to construct revision opera-
tors. Section 10 concludes the paper.

I will make no effort to define or explain the many math-
ematical notions borrowed from order theory, as most of
them are (or deserve to be) well-known. I refer to a good
introductory treatment (such as [4]) instead.

2 Belief structures

Consider a non-empty setS whose elements are calledbe-
lief models. They are partially ordered by a relation≤ that
is reflexive, transitive and antisymmetric, but need not be
complete: it is not required that any two elementsa and
b of S should be comparable in the sense thata ≤ b or
b ≤ a. A first important assumption is that for any sub-
setA of S, its supremumsup A and infimuminf A with
respect to this order exist, or in other words:

S1. 〈S,≤〉 is a complete lattice.

Let us denote the top, or greatest element,supS of this
complete lattice by1S. Its bottom, or smallest element,
inf S is denoted by0S. Note that also1S = inf ∅ and



0S = sup ∅. The supremum, or join, of two belief models
a andb is also denoted bya ^ b and the infimum, or meet,
by a _ b.

Among the belief models, there is a subsetC ⊆ S of mod-
els that are calledcoherent. Coherent belief models are
considered to be more perfect than the others, which will
be calledincoherent. A second central assumption is that:

S2. C is closed under arbitrary non-empty infima: for any
non-empty subsetC of C, inf C ∈ C.

The belief model1S will represent contradiction, so we
assume that:

S3. 〈C,≤〉 has no top. In particular,1S is not a coherent
belief model:1S 6∈ C.

This means that the ordered structure〈C,≤〉 is a com-
plete meet-semilattice but not a complete lattice: every
non-empty subset ofC has an infimum but not necessarily
a supremum in this structure. On the other hand, the set
C = C∪{1S} provided with the ordering≤ is a complete
lattice, whose infimum (but not necessarily its supremum)
coincides with the infimum of〈S,≤〉. The relation≤ onC
could be interpreted roughly as ‘is less informative than’.

Definition 1. If 〈S,≤〉 andC satisfy requirements S1–S3,
then we call the triple〈S,C,≤〉 abelief structure.

We can now introduce a closure operatorClS : S → S as
follows: for any belief modelb in S,

ClS(b) = inf{c ∈ C : b ≤ c},

is the smallest coherent belief model that dominatesb.
This operator has the following immediate properties.

Proposition 1. Let 〈S,C,≤〉 be a belief structure. For
any belief modelsa andb in S,

1. a ≤ ClS(a);

2. if a ≤ b thenClS(a) ≤ ClS(b);

3. ClS(ClS(a)) = ClS(a);

4. ClS(a ^ b) = ClS(ClS(a) ^ ClS(b));

5. ClS(a) = a if and only if a ∈ C;

This justifies our callingClS a closure operator. The un-
derlying idea is that for anya ∈ S, a and ClS(a) are
equally informative. The closureClS takes any belief
modela with ClS(a) < 1S into a coherent belief model
ClS(a) that is equally informative. We do not require that
ClS(0S) = 0S: bv = ClS(0S) is the smallest coherent
belief model, also called thevacuous belief model.

The closure operatorClS allows us to give an expression
for the supremum in the complete lattice〈C,≤〉: for any

subsetC of C, its supremum in this structure is given by
ClS(sup C), wheresup C is the supremum ofC in the
complete lattice〈S,≤〉.

Recall that the top1S is assumed to represent contradic-
tion, or inconsistency. The closure operatorClS allows us
to take this a step further.

Definition 2. A belief modela ∈ S is calledconsistentif
ClS(a) ∈ C, that is,ClS(a) < 1S. Two belief modelsa
andb in S are said to beconsistent(with one another) if
a ^ b is consistent. More generally, a collectionS ⊆ S of
belief models is calledconsistentif sup C is a consistent
belief model.

Coherent belief models are in particular consistent. The
following proposition explicates the relationship between
coherence and consistency: the consistent belief models
are the ones that are below some coherent belief model.

Proposition 2. Let 〈S,C,≤〉 be a belief structure. For
any belief modela in S, the following statements are
equivalent:

1. a is consistent;

2. ClS(a) < 1S;

3. a ≤ b for some coherent belief modelb ∈ C.

Proof. Assume thata is consistent. ThenClS(a) ∈ C
whenceClS(a) < 1S. Next assume thatClS(a) < 1S.
Thena ≤ ClS(a) andClS(a) ∈ C, which means that the
third statement holds. Finally, assume that the third state-
ment holds. Then by Proposition 1,ClS(a) ≤ ClS(b) =
b < 1S, whenceClS(a) ∈ C, soa is consistent.

A belief model is inconsistent if closure takes it to the con-
tradictory model1S. Note that1S is the only contradictory
or inconsistent model inC. In summary, the idea behind
closure is that it takesS to the informationally equivalent
structureC, where1S is the only inconsistent model. Also
note that ifa andb are consistent, thenClS(a ^ b) is a
coherent belief model, and it is the supremum ofClS(a)
and ClS(b) in the complete meet-semilattice〈C,≤〉. It
could be interpreted as the least informative coherent be-
lief model that is at least as informative asa andb.

3 Strong belief structures and their duals

There is no greatest (most informative) coherent belief
model: the partially ordered set〈C,≤〉 has no top. But
it may have maximal elements, that is, elementsm that
are not dominated by any other element ofC. I denote by
M the (possibly empty) set of these maximal elements:

M = {m ∈ C : (∀c ∈ C)(m ≤ c ⇒ m = c)}.

We can render the notion of a belief structure much more
powerful by making an extra assumption, which concerns



precisely these maximal elements. We may require that
they can be used to construct any coherent belief model:

S4. 〈C,≤〉 is dually atomic: M 6= ∅ and for allc ∈ C,

c = inf{m ∈ M : c ≤ m}.
Definition 3. A belief structure〈S,C,≤〉 for which the
additional requirement S4 is satisfied, is called astrong
belief structure.

We also introduce the following notation: for any belief
modelb ∈ S,

M(b) = {m ∈ M : b ≤ m}.

M(·) can be interpreted as a map fromS to the power set
℘(M) of M. It will play an important part in the inves-
tigation of the structure of〈S,C,≤〉. Note that ifb ∈ C
then S4 implies thatM(b) 6= ∅. For if M(b) = ∅, then
infM(b) = 1S > b. In other words, in a strong belief
structure every coherent belief model is dominated by at
least one maximal coherent belief model. Moreover, there
is the following extension of Proposition 2.

Proposition 3. Let 〈S,C,≤〉 be a strong belief structure,
and leta be a belief model inS. Then each of the three
statements in Proposition 2 is equivalent toM(a) 6= ∅.

Proof. It suffices to prove thatM(a) 6= ∅ is equivalent to
the third statement. Assume that there is ab ∈ C such
that a ≤ b. It follows from the definition ofM(·) that
M(b) ⊆M(a). We have argued above that forb ∈ C, S4
implies thatM(b) 6= ∅, whenceM(a) 6= ∅. Conversely,
if M(a) 6= ∅, thena ≤ infM(a) andinfM(a) ∈ C.

There is a very close relationship between the closure op-
eratorClS and the mapM(·).
Proposition 4. Let 〈S,C,≤〉 be a strong belief structure.
Then for alla ∈ S:

1. M(a) = M(ClS(a));

2. ClS(a) = infM(a);

3. a ∈ C ⇔ a = infM(a).

Proof. We begin with the first statement. It follows from
Proposition 1 that for allb ∈ C, a ≤ b ⇔ ClS(a) ≤ b,
and sinceM ⊆ C it follows that for all m ∈ M,
m ∈ M(a) ⇔ m ∈ M(ClS(a)). We continue with
the second statement. First, assume thata is inconsis-
tent. Then on the one handClS(a) = 1S and on the other
handM(a) = ∅, by Propositions 2 and 3. So in this case,
infM(a) = inf ∅ = 1S = ClS(a). Next, assume thata is
consistent. Then the first statementM(a) = M(ClS(a))
implies thatinfM(a) = infM(ClS(a)) = ClS(a), tak-
ing into account S4 and the fact thatClS(a) ∈ C, by
Propositions 2 and 3. The third statement is an immedi-
ate consequence of the second.

It will be very important to pay special attention to the
direct images of the setsC andC under the mapM(·):

M = M(C) = {M(c) : c ∈ C} = M(S)

M = M(C) = {M(c) : c ∈ C}.

BothM andM are subsets of℘(M), i.e., sets of subsets of
M. Moreover,M(bv) = M, soM ∈ M. Also,M(1S) =
∅ belongs toM but not toM, whenceM = M \ {∅}.

A crucial property ofM is that it is an intersection struc-
ture with topM, or in other words that it is closed un-
der arbitrary (also empty) intersections. Consequently, the
partially ordered set〈M,⊆〉 is a complete lattice, where
intersection has the role of infimum. This is made more
explicit in the following theorem.

Theorem 5. Let 〈S,C,≤〉 be a strong belief structure.
Then the following propositions hold.

1. M is a Moore collection of subsets ofM [4, 14]: it
is closed under arbitrary (and therefore also empty)
intersections.

2. The complete lattices〈C,≤〉 and 〈M,⊆〉 are du-
ally order-isomorphic, with dual order isomorphism
M(·).

3. Consider the operatorClM : ℘(M) → ℘(M) de-
fined byClM(N ) = M(infN ) for all N ⊆ M.
Then ClM is a Moore closure [4, 14] andM is
the associated set of closed sets:M = {N ⊆
M : ClM(N ) = N}.

4. All singletons{m}, m ∈ M, are closed.

Proof. We first prove the first statement. Let{Nj : j ∈ J}
be a family of elements ofM. If J = ∅, then

⋂

j∈J Nj =
M = M(bv) ∈ M. If J 6= ∅, then letbj = infNj ∈ C,
whence by Proposition 4,Nj = M(bj) for all j ∈ J .
Consequently,

⋂

j∈J

Nj =
⋂

j∈J

M(bj) = M(sup
j∈J

bj) ∈ M,

sincesupj∈J bj ∈ S. We now turn to the second state-
ment. Considerb1 andb2 in C. First, if b1 ≤ b2 then obvi-
ouslyM(b2) ⊆M(b1). Conversely, ifM(b2) ⊆M(b1),
it follows from Proposition 4 thatb1 = infM(b1) ≤
infM(b2) = b2. So we conclude that

b1 ≤ b2 ⇔M(b2) ⊆M(b1). (1)

This means thatM(·) is a dual order-embedding of〈C,≤〉
into 〈M,⊆〉. It is furthermore surjective, sinceM =
M(C). We conclude thatM(·) is indeed a dual order
isomorphism. To prove the third statement, we first show
thatClM satisfies the defining properties of a Moore clo-
sure. Consider a subsetN of M. For anym ∈ N we



have thatinfN ≤ m so m ∈ M(inf N ), and there-
fore N ⊆ ClM(N ). Moreover,a = inf N ∈ C, so
a = infM(a) = infM(infN ) by Proposition 4. Con-
sequently,ClM(N ) = M(a) = M(infM(infN )) =
ClM(ClM(N )). Finally, for any subsetsN and S of
M such thatN ⊆ S, we haveinf S ≤ infN , whence
M(infN ) ⊆ M(inf S), or ClM(N ) ⊆ ClM(S). This
means thatClM is indeed a Moore closure. We now
look at its associated set of closed sets. Consider a sub-
setN of M. Then it follows fromN = ClM(N ) that
N = M(infN ), soN ∈ M since infN ∈ C. Con-
versely, ifN ∈ M, thenN = M(a) for somea ∈ C, and
by Proposition 4,a = infM(a) = inf N . Consequently,
N = M(a) = M(infN ) = ClM(N ). This means that
M = {N ⊆ M : ClM(N ) = N}. The fourth statement
follows at once fromM(m) = {m} for all m ∈ M.

The elements ofM are therefore the closed sets of maxi-
mal elements of〈C,≤〉. Since1S and∅ correspond in the
dual order isomorphism, the partially ordered sets〈C,≤〉
and〈M,⊆〉 are dually order-isomorphic as well, with es-
sentially the same dual order isomorphismM(·). Other
correspondences arebv andM.

The complete lattice〈M,⊆〉 is called thedual belief struc-
ture of 〈S,C,≤〉. Elements ofM will also be called
spheres. As 1S is the only inconsistent belief model inC,
so∅ is the only inconsistent sphere inM, and it represents
contradiction.M is called thevacuous sphere, and it cor-
responds to the least informative coherent belief modelbv.
Singletons{m} correspond to the maximally informative
coherent belief modelsm ∈ M.

We have seen that taking infima is very easy in the struc-
ture C: they coincide with infima inS. But for taking
suprema inC, we need to invoke the closure operatorClS.
As an example, for two coherent belief modelsa and b,
their supremum inC is given byClS(a ^ b). But the cor-
responding operation is much easier in the dual structure:
M(ClS(a ^ b)) = M(a ^ b) = M(a) ∩M(b), or in
other words, we just have to take intersections. To sum-
marise, the most informative coherent belief model that is
at most as informative asa and b is better described in
the ‘direct structure’ [a _ b], than in the dual structure
[ClM(M(a)∪M(b))]; and the least informative coherent
belief model that is at least as informative asa andb is has
a more convenient representation [M(a) ∩M(b)] in the
dual than in the direct structure [ClS(a ^ b)].

4 Examples of belief structures

Most of the mathematical models for representing beliefs
(or uncertainty) in the literature that I am aware of con-
stitute belief structures, apart from the ones that enforce
precision or completeness, such as the Bayesian model.
Many important ones even give rise to strong belief struc-

tures. In this section, I briefly discuss a number of exam-
ples, without aiming at completeness. They provide the
main justification for the introduction and study of the ab-
stract notions in the previous sections.

Classical propositional logic

Consider an object languageL of well-formed formulae,
or sentences, in classical propositional logic with the usual
axiomatisation (see for instance [4]). We call any subset of
L, i.e., any set of sentences, a belief model.1 These belief
models are partially ordered by set inclusion⊆. We call
a set of sentences coherent if it is logically closed, that
is, closed under conjunction and modus ponens (implica-
tion). Thus, a coherent set of sentences is what logicians
sometimes call atheory, and the partial order⊆ for co-
herent models indeed has the interpretation ‘is less infor-
mative than’. The intersection (the infimum for⊆) of a
collection of coherent belief models is still coherent, and
the corresponding closure operator is of course logical clo-
sure. Consistency clearly amounts to logical consistency.
By applying the Boolean Ultrafilter Theorem [4, 14, 18]
to the Lindenbaum algebra associated withL, we see that
there are maximal coherent sets of sentences, and that
every coherent set of sentences is the intersection of the
maximal coherent sets including it. These maximal logi-
cally closed sets of sentences are sometimes called(Post-
)complete theories: adding any sentence to them leads to
logical inconsistency. We may conclude that the structure
that appears in the context of classical propositional logic
is a strong belief structure. It is interesting to note that
here, the maximal coherent belief models, which form the
basis for the dual structure, are sometimes called(possi-
ble) worlds. It can be shown that the closure operator on
the dual structure is topological, or in other words that the
union of two closed sets of possible worlds is closed.

Imprecise probability models

In his important work on imprecise probabilities [18], Wal-
ley discusses a number of essentially equivalent imprecise
probability models: lower previsions, upper previsions,
sets of almost-desirable gambles, sets of strictly desirable
gambles, almost-preference and strict preference relations.
Lower and upper probabilities are special cases of these,
and are less expressive. I shall concentrate here on lower
previsions, but related considerations can be made for the
other models. Consider a non-empty setΩ. A bounded
real-valued map onΩ is called a gamble, and it repre-
sents an uncertain reward. A lower prevision onK (a
belief model), is a map from a set of gamblesK to the
extended real interval[−∞, +∞]. Lower previsions can
be partially ordered point-wise, and thus constitute a com-
plete lattice. The ordering indeed has the interpretation ‘is

1Gärdenfors [10] speaks of anepistemic state.



less informative than’ or ‘is less precise than’. The coher-
ent belief models are the lower previsions that are coher-
ent in Walley’s sense [18, Section 2.5], and the point-wise
infimum of a non-empty collection of coherent lower pre-
visions is coherent. The consistent models turn out to be
the lower previsions that avoid sure loss [18, Section 2.4],
and the closure operator is nothing but natural extension
[18, Section 3.1]. The maximal coherent belief models are
the linear previsions onK [18, Section 2.8], which are the
precise probability models. A coherent lower prevision
is the point-wise infimum of its set of dominating linear
previsions, so lower previsions constitute a strong belief
structure. The spheres are the weak*-closed convex sets
of linear previsions, and closure in the dual structure is
therefore convex closure, and is not topological.

Several other models, briefly

The confidence relationsI introduced and studied in [5]
constitute a strong belief structure. So do Giles’ so-called
possibility functions[11], which, with hindsight, are pre-
cisely the coherent upper probabilities on a field of sets.
Ordinal possibility measures[6, 9] lead to a belief struc-
ture that is not strong: in this structure the belief models
are maps from the power set℘(Ω) of some non-empty set
Ω to a complete lattice (or chain)〈K,�〉. They can be
ordered point-wise (we consider the dual, or reversed, or-
dering), and the coherent belief models are the normalK-
valued possibility measures. These are closed under in-
fima (i.e., under point-wise suprema), and the correspond-
ing closure operator can be related to possibilistic exten-
sion [3]. The same holds for Spohn’sordinal conditional
functions[17], which are very closely related to, but less
expressive than, ordinal possibility measures.

Among the hierarchical uncertainty models, theprice
functionsintroduced by Walley and myself [8] constitute
a belief structure that is not strong. On the other hand, the
more generallower desirability functions[7] do lead to
a strong belief structure, for which the maximal coherent
belief models are essentially the Bayesian second-order
probabilities.

Aumann’spreference-or-indifference relationsdefined on
a mixture space [1, 2] lead to a belief structure, and so
do thepreference relationson horse lotteries studied by
Seidenfeldet al. [15]. In both cases, the belief structures
seem not to be strong, but the authors do pay attention
to representation of their belief models as intersections
(i.e., infima) of maximal belief models, and are able to
derive interesting but partial representation results. In any
case, and although the authors would probably object to
this (see the discussion in [15, Section VI]), it is possible
to get to a strong belief structure by looking at almost-
preference rather than real preference,2 in the spirit of [18,

2This means that we look at a different notion of preference.

Sections 3.7 and 3.8]: one item is almost-preferred to a
second item if it is the limit of a sequence of items that
are really preferred to the second item. This amounts to
replacing the Archimedean axioms in [1, 15] by a closed-
ness axiom, and keeping all the other axioms.

5 Belief substructures

In order to investigate the relations between the many be-
lief structures in the literature, it is useful to be able to
express that one belief structure is more general than an-
other, or extends it in some way. This can be done with
the notions of belief substructures, belief embeddings and
belief isomorphisms. I want to stress that only a few ba-
sic notions are introduced here: the ideas hinted at below
could (and probably should) be worked out and studied in
much more detail.

Definition 4. Let 〈S1,C1,≤1〉 and〈S2,C2,≤2〉 be belief
structures. Then〈S1,C1,≤1〉 is called abelief substruc-
tureof 〈S2,C2,≤2〉 if

1. S1 ⊆ S2, 1S1 = 1S2 and0S1 = 0S2 ;

2. 〈S1,≤1〉 is a complete sublattice of〈S2,≤2〉;
3. C1 = C2 ∩ S1.

If the belief structures〈S1,C1,≤1〉 and〈S2,C2,≤2〉 are
strong, then〈S1,C1,≤1〉 is called astrong belief sub-
structureof 〈S2,C2,≤2〉 if in addition:

4. M1 = M2 ∩ S1.

Definition 5. Let 〈S1,C1,≤1〉 and〈S2,C2,≤2〉 be belief
structures. Then a mapφ : S1 → S2 is called abelief
embeddingof 〈S1,C1,≤1〉 in 〈S2,C2,≤2〉 if

1. φ is a bottom and top preserving order embedding of
〈S1,≤1〉 in 〈S2,≤2〉, i.e., φ(1S1) = 1S2 , φ(0S1) =
0S2 and

(∀(s, t) ∈ S2
1)(s ≤1 t ⇔ φ(s) ≤2 φ(t)).

2. φ(C1) = C2 ∩ φ(S1).

If the belief structures〈S1,C1,≤1〉 and〈S2,C2,≤2〉 are
strong, thenφ : S1 → S2 is astrong belief embeddingof
〈S1,C1,≤1〉 in 〈S2,C2,≤2〉 if in addition:

3. φ(M1) = M2 ∩ φ(S1).

If moreoverφ is not only injective, but also surjective,
and therefore an order isomorphism between〈S1,≤1〉
and 〈S2,≤2〉, thenφ is called a(strong) belief isomor-
phism, and the (strong) belief structures〈S1,C1,≤1〉 and
〈S2,C2,≤2〉 are calledbelief isomorphic. In that case,
φ(S1) = S2, φ(C1) = C2 andφ(M1) = M2.



The most important part of a belief structure is its setC
of coherent belief models. Thus it is possible that two be-
lief structures have essentially the same set of coherent be-
lief models, although they differ as far as their incoherent
models are concerned. Since most types of reasoning only
involve the coherent models, we need some way to recog-
nise that these two structures are identical in what matters
most.

Definition 6. Two belief structures〈S1,C1,≤1〉 and
〈S2,C2,≤2〉 are called coherence isomorphicif the
complete lattices〈C1,≤1〉 and 〈C2,≤2〉 are order-
isomorphic.

This means that in the two belief structures, the coherent
models, the closure operators, the sets of maximal ele-
ments and therefore also their dual structures (if they exist)
are essentially the same.

As mentioned in Section 4, most of the imprecise probabil-
ity models introduced by Walley [18] lead to strong belief
structures: e.g., lower previsions, upper previsions, sets of
almost-desirable gambles and almost-preference relations.
These structures are all coherence isomorphic, and they
have essentially the same dual structure: weak*-closed
convex sets of linear previsions. Among these structures,
the ones built on lower previsions and upper previsions are
also belief isomorphic.

The following important example explains how the strong
belief structure built on classical propositional logic can
be seen as a substructure of the one built on the above-
mentioned imprecise probability models.

Example1. We proceed in three consecutive steps. First of
all, consider the strong belief structure based on classical
propositional logic discussed in Section 4. By the Stone
Representation Theorem applied to the Lindenbaum alge-
bra of the systemL [4], there is some setΩ (its set of
possible worlds) and a fieldA of subsets ofΩ such that
there is a one-to-one correspondence between sentences in
L—after identifying syntactically equivalent sentences—
and elements ofA. Moreover, (i) sets of sentences (i.e.,
belief models) correspond tosubsetsof A; (ii) logically
closed sets of sentences (i.e., coherent belief models) cor-
respond tofiltersof A; and (iii) maximally consistent log-
ically closed sets of sentences (i.e., maximal coherent be-
lief models) correspond toultrafilters of A. If we denote
the set of subsets ofA by ℘(A) and its set of filters by
F(A), then〈℘(A),F(A),⊆〉 is a strong belief structure,
which we have argued is belief isomorphic—after identi-
fying equivalent sentences—to the strong belief structure
based on the classical propositional logic systemL.

As a second step, letS2 be the set of maps fromA to the
real unit interval[0, 1], and letS1 be the set of maps from
A to the doubleton{0, 1}. Both the orderings≤1 on S1

and≤2 on S2 are point-wise. The setC2 is the set of
coherent—in the sense of [18, Section 2.7]—lower prob-

abilities onA, and the elements of its subsetC2 are the
coherent0 − 1-valued lower probabilities onA. The set
M2 contains the finitely additive probabilities onA, and
its subsetM1 the ones that are0−1-valued.〈S1,C1,≤1〉
is a strong belief substructure of〈S2,C2,≤2〉. In other
words, using as belief models lower probabilities that only
assume the values0 and1, leads to a strong belief struc-
ture that can be extended to, or is embedded in, the strong
belief structure that results from using more general lower
probabilities.

As a final step, we relate the strong belief structures
〈℘(A),F(A),⊆〉 and 〈S1,C1,≤1〉. Consider the map
φ : ℘(A) → S1 that takes a subsetB of A to its indicator
functionIB: φ(B) = IB is a0−1-valued lower probability
onA, and for allA ∈ A:

φ(B)(A) =

{

1 if A ∈ B
0 if A 6∈ B.

Thenφ is an order isomorphism between the complete lat-
tices〈℘(A),⊆〉 and〈S1,≤1〉. Walley [18, Section 2.9.8]
has essentially shown thatφ maps the filters ofA to the co-
herent0− 1 valued lower probabilities, and the ultrafilters
of A to the0 − 1-valued finitely additive probabilities. In
other words, the strong belief structures〈℘(A),F(A),⊆〉
and〈S1,C1,≤1〉 are belief isomorphic.

We conclude that the strong belief structure built on clas-
sical propositional logic can be embedded in the one built
on lower probabilities. In this sense, the theory of coherent
lower probabilities is a generalisation of classical proposi-
tional logic. In this embedding, precise probabilities play
the role of maximal elements, and correspond to the max-
imal consistent logically closed sets of sentences. In this
light, it seems strange that a number of Bayesians continue
to claim that probability measures are theonly reasonable
extension of classical logic able to deal with partial be-
liefs: how many logicians would claim that the only ra-
tional logically closed sets of sentences are the maximal
ones—or that the only rational theories are complete?

6 Belief expansion

I now want to show that it can be useful to look at ex-
isting types belief of models as special cases of the ab-
stract order-theoretic structures introduced above. This is
because quite often the exact underlying details of how be-
lief models are constructed is not really of crucial impor-
tance; what matters is the reasoning, or inference, method
and that is captured completely in the closure operatorClS
and its dual counterpartClM (if it exists). We shall see be-
low that in a number of interesting cases, only the order-
theoretic properties of these closure operators are relevant,
and not the additional properties which they may derive
from the underlying details of the belief models.



In the sections that follow, I generalise (part of) the work
done by G̈ardenfors [10] on belief expansion and revision
of epistemic states in the context of classical propositional
logic, where his so-calledepistemic statesare logically
closed sets of sentences. In principle, nothing prevents us
from considering as an epistemic state a more general type
of belief model, such as the imprecise probability models
or the preference orderings discussed in Section 4. Indeed,
these models are also intended to represent the beliefs (and
utilities) of some subject. But how do we then define be-
lief expansion and revision, and how can Gärdenfors’ co-
herentist axioms for belief change be generalised? Below I
sketch how this could be done, and thereby generalise the
work done by Moral and Wilson [13] on belief revision
when the epistemic states are closed convex sets of proba-
bilities. Due to limitations of space, I shall restrict myself
to pointing out the more striking results, and give only lit-
tle further motivation. The definitions and results below
(and the order-theoretic simplicity of their proofs) should
be compared with the discussion in Gärdenfors’ book [10]
in order to be fully understood. I hasten to add that my
concentrating on G̈ardenfors’ work does not imply that I
think he had the final word in the matter of belief change,
nor that I believe his approach and his axiom systems to be
the only reasonable ones; by extending his work I mainly
want to illustrate the usefulness of order-theoretic machin-
ery introduced above.

Let me start with belief expansion. Assume that we have
a coherent belief modelb ∈ C, and that new information
is obtained, which can be represented by a (not necessar-
ily coherent) belief modelγ ∈ S. This new information
takesb to a new coherent belief modelb′. We represent
the action of new informationγ ∈ S on the coherent belief
modelb by an operatorE (b; ·) : S → S, called(belief) ex-
pansion operator. In the spirit of the work of G̈ardenfors,
we may require that such an operator should satisfy the
following postulates: forb andc in C, and for allγ ∈ S,

E1. E (b; γ) ∈ C;

E2. γ ≤ E (b; γ);

E3. b ≤ E (b; γ);

E4. if γ ≤ b thenE (b; γ) = b;

E5. if b ≤ c thenE (b; γ) ≤ E (c; γ);

E6. E (b; ·) is the point-wise smallest (least informative)
of all the operators satisfyingE1–E5.

E1–E6 correspond one by one to Gärdenfors’ expansion
postulates(K+1)–(K+6), in that order. The correspon-
dence is obvious if we recall that expansion by a proposi-
tion has been generalised to expansion by a belief model.

Theorem 6. Let 〈S,C,≤〉 be a belief structure, and con-
sider a coherent belief modelb ∈ C. Then the postu-
latesE1–E6 single out a unique belief expansion operator

E (b; ·), given by:

E (b; γ) = ClS(b ^ γ), γ ∈ S.

Proof. Note thatClS(b ^ ·) obviously satisfiesE1–E5.
Moreover, for anyγ ∈ S it follows from E2 andE3 that
b ^ γ ≤ E (b; γ) and fromE1 and Proposition 1 that
ClS(b ^ γ) ≤ E (b; γ). FromE6 we then deduce that
E (b; γ) = ClS(b ^ γ).

It is interesting to note that ifb and γ are consistent
ClS(b ^ γ) is the supremum ofb andClS(γ) in the com-
plete join-semilattice〈C,≤〉: it is the smallest (least in-
formative) coherent belief model that is at least as infor-
mative asb andClS(γ). In the dual structure (if it exists),
expansion takes a very simple form: expanding the sphere
M(b) ∈ M with the sphereN ∈ M amounts to taking
their intersectionM(b) ∩N .

7 Belief revision

We now turn to belief revision, where a coherent belief
model b is revised into a belief modelb′ under new in-
formation in the form of belief modelsγ ∈ S. We again
represent the action of the new informationγ ∈ S on the
coherent belief modelb by an operatorR(b; γ) : S → S,
called(belief) revision operator. Inspired by G̈ardenfors’
work, we propose the following postulates for belief revi-
sion: forb in C, and for allγ in S,

R1. R(b; γ) ∈ C;

R2. γ ≤ R(b; γ);

R3. R(b; γ) ≤ E (b; γ);

R4. if b andγ are consistent thenE (b; γ) ≤ R(b; γ);

R5. R(b; γ) is inconsistent if and only ifγ is inconsistent;

R6. R(b; γ) = R(b; ClS(γ));

R7. R(b; γ ^ δ) ≤ E (R(b; γ); δ);

R8. if R(b; γ) andδ are consistent thenE (R(b; γ); δ) ≤
R(b; γ ^ δ).

R1–R8 again correspond one by one to Gärdenfors’ revi-
sion postulates(K∗1)–(K∗8), in that order. Here too, the
correspondence is straightforward if (i) we recall that revi-
sion by a proposition has been generalised to revision by a
belief model, (ii) we invoke the notion of (in)consistency
to capture the essence of the postulates(K∗4) and(K∗5)
involving the negation of propositions, and (iii) we realise
that the conjunction of two propositions corresponds in our
language to the join of two belief models: a belief model
generalises a set of propositions, and revision by a con-
junction of two propositions means revision by both the
propositions, i.e., by their ‘union’.



The more striking results can be derived if the belief struc-
ture 〈S,C,≤〉 is strong. Let us reformulate these axioms
into their dual versions. It should be noted thatR1 andR6
are necessary for this to be possible, as we can only rep-
resent elements ofC by closed sets of maximal coherent
belief models. So, whenever we work in the dual space,
with a dual revision operatorR(M(b); ·) : M → M, it is
implicit that R1 andR6 hold. It is easily verified that the
other postulates can be reformulated in the following way:
for all N andS in M,

R2. R(M(b);N ) ⊆ N ;

R3. M(b) ∩N ⊆ R(M(b);N );

R4. if M(b) ∩N 6= ∅ thenR(M(b);N ) ⊆M(b) ∩N ;

R5. R(M(b);N ) = ∅ if and only ifN = ∅;
R7. R(M(b);N ) ∩ S ⊆ R(M(b);N ∩ S);

R8. if R(M(b);N ) ∩ S 6= ∅ thenR(M(b);N ∩ S) ⊆
R(M(b);N ) ∩ S.

I now propose a very particular type of dual revision op-
erator, which will turn out to be sufficiently general. The
central idea behind it is that for everyb ∈ C (or every
M(b)) there is aselection functionSb : M → M that se-
lects for anyN ∈ M a subsetSb(N ) of N under the
following conditions:

S1. if M(b) ∩N 6= ∅ thenSb(N ) = M(b) ∩N ;

S2. if M(b) ∩ N = ∅ andN 6= ∅ thenSb(N ) is some
non-empty closed subset ofN ; and

S3. Sb(∅) = ∅.

A dual revision operatorR(M(b); ·) can now be defined
as follows: for anyN in M,

R(M(b);N ) = Sb(N ). (2)

For the corresponding revision operatorR(b; ·) we then
have:

R(b; γ) = inf Sb(M(γ)). (3)

There is the following general representation theorem. In
the dual structure, its proof is a matter of straightforward
verification, and it is therefore omitted.

Theorem 7. Let 〈S,C,≤〉 be a strong belief structure
and letb ∈ C be a coherent belief model. A dual revi-
sion operatorR(M(b); ·) satisfiesR2–R5 if and only if
there is a selection functionSb satisfyingS1–S3 such
that R(M(b); ·) = Sb(·). Equivalently, a revision oper-
ator R(b; ·) satisfiesR1–R6 if and only if there is a se-
lection functionSb satisfyingS1–S3 such thatR(b; ·) =
inf Sb(M(·)). Moreover,R(M(b); ·) also satisfiesR7–
R8, and R(b; ·) also satisfiesR7–R8, if and only if the
selection functionSb satisfies, for allN andS in M:

S4. if S ∩Sb(N ) 6= ∅ thenSb(N ∩ S) = S ∩Sb(N ).

Since a selection function is clearly not uniquely defined,
the revision axioms allow for more than one type of revi-
sion. We explore a few interesting revision methods in the
following sections.

8 Revision using linear orderings

In this section, I show how a revision operator can be con-
structed using a linear ordering on the set of maximal el-
ementsM. The discussion here is inspired by Gärdenfors
relational partial meet contractions[10, Section 4.4] and
by the work of Moral and Wilson on revision based on
linear orderings of probabilities [13].

Let us assume that the elementsm of M are ordered by
a complete preorder, i.e., a relation that is reflexive, tran-
sitive and complete, but not necessarily antisymmetrical.
This is equivalent to assuming that there is a complete
chain 〈K,�〉 and a mapπ : M → K which induces an
ordering onM through the values it takes onK. We de-
note the top of〈K,�〉 by 1K and its bottom by0K .

We can use the ordering induced onM to define a partic-
ular selection functionSπ, as follows: for anyN in M,

Sπ(N ) = {m ∈ N : (∀n ∈ N )(π(n) � π(m))}
= {m ∈ N : Π(N ) � π(m)}
= {m ∈ N : Π(N ) = π(m)}

(4)

whereΠ(N ) = supm∈N π(m), soΠ is theK-valued pos-
sibility measure, defined on℘(M), with distributionπ [6].
We can now ask what propertiesπ must have forSπ to
satisfyS1–S3. It is no essential restriction to assume that
Π is normal in the sense thatΠ(M) = supm∈M π(m) =
1K .

Theorem 8. Let 〈S,C,≤〉 be a strong belief structure,
and let b ∈ C be a coherent belief model. Letπ be an
M − K-map such that theK-valued possibility measure
Π with distributionπ is normal. Consider the selection
functionSπ defined by(4). ThenSπ satisfiesS1–S3 if
and only if

π1. M(b) = {m ∈ M : π(m) = 1K}; and

π2. for everyN in M, {m ∈ N : π(m) = Π(N )} is a
non-empty closed subset ofN .

In that case the associated dual belief revision operator
satisfiesR2–R5 andR7–R8. The associated belief revi-
sion operator then satisfiesR1–R8.

Note that the second condition implies in particular that
the mapπ assumes its supremum on every closed subset
of M.



Proof. Assume thatSπ satisfiesS1–S3. SinceM ∩
M(b) = M(b) 6= ∅, it follows from S1 that

M(b) = M ∩M(b) = Sπ(M)
= {m ∈ M : π(m) = 1K},

which tells us thatπ1 holds. Next, consider anyN ∈ M,
thenN 6= ∅ and usingS1 and S2, Sπ(N ) = {m ∈
N : π(m) = Π(N )} is a non-empty closed subset ofN ,
so π2 holds. Conversely, assume thatπ1 and π2 hold.
Consider an elementN of M. If N = ∅ then obviously
Sπ(N ) = ∅. If N ∩M(b) 6= ∅, then it follows fromπ1
that on the one handΠ(N ) = 1K , and consequently on
the other hand

Sπ(N ) = {m ∈ N : π(m) = 1K} = N ∩M(b).

If N ∩ M(b) = ∅ andN 6= ∅, we know fromπ2 that
Sπ(N ) = {m ∈ N : π(m) = Π(N )} is a non-empty
closed subset ofN . We conclude thatSπ satisfiesS1–
S3: Sπ is a selection function, and it follows from The-
orem 7 that the associated dual belief revision operator
R(M(b); ·) = Sπ(·) satisfiesR2–R5. To prove that it
also satisfiesR7–R8, we must show thatSπ satisfiesS4.
ConsiderN andS in M and assume thatS ∩Sπ(N ) 6= ∅.
This implies that there is anm ∈ N ∩ S such that
π(m) = Π(N ), whenceΠ(N ) = Π(N ∩ S). Conse-
quently,

Sπ(N ∩ S) = {m ∈ N ∩ S : π(m) = Π(N ∩ S)}
= {m ∈ N ∩ S : π(m) = Π(N )}
= S ∩ {m ∈ N : π(m) = Π(N )}
= S ∩Sπ(N ),

soSπ satisfiesS4. The rest of the proof is now immedi-
ate.

9 Revision using a system of spheres

I have called the elementsN of a dual belief structure
〈M,⊆〉 spheresbecause they are the natural generalisa-
tions of the spheres studied by Grove [12] in the context
of belief revision in classical propositional logic (see also
[10, Section 4.5]). In this section, I show that the gen-
eralised spheres can also be used to construct a revision
operator.

Let b ∈ C be a coherent belief model, soM(b) 6= ∅. We
call σ(b) the collection of spheres that includeM(b):

σ(b) = {N ∈ M : M(b) ⊆ N},

so the elementsN of σ(b) correspond to coherent belief
modelsinfN ≤ b that are less informative thanb. Note
that σ(b) is an intersection structure with bottomM(b)
and topM (it is closed under arbitrary intersections). The

following definition generalises Grove’s notion of a sys-
tem of spheres, but note that contrary to Grove, I do not
require that the elements of a sphere should be linearly or-
dered by set inclusion.3

Definition 7. Let 〈S,C,≤〉 be a strong belief structure
and letb ∈ C be a coherent belief model, so thatM(b) 6=
∅. We callσ ⊆ M asystem of spheresaroundM(b) if

σ1. σ ⊆ σ(b), i.e.(∀N ∈ σ)(M(b) ⊆ N );

σ2. M(b) ∈ σ andM ∈ σ;

σ3.
⋂

{N ∩ S : S ∈ σ andN ∩ S 6= ∅} 6= ∅ for all
N ∈ M.

Given a system of spheresσ aroundM(b), we define a
selection functionSσ in the spirit of Grove [10, 12]: for
anyS ∈ M,

Sσ(S) =
⋂

{S ∩ N : N ∈ σ andS ∩ N 6= ∅}

= S ∩
⋂

{N ∈ σ : S ∩ N 6= ∅}.
(5)

This selection leads to a very convenient type of revision
operator, as the following theorem shows.

Theorem 9. Let〈S,C,≤〉 be a strong belief structure and
let b ∈ C be a coherent belief model, so thatM(b) 6= ∅.
Letσ be a system of spheres aroundM(b) 6= ∅ and letSσ

be the associated selection function, defined by(5). Then
Sσ satisfiesS1–S4, and the corresponding dual belief
revision operator satisfiesR2–R5 andR7–R8. The cor-
responding belief revision operator then satisfiesR1–R8.

Proof. We only have to prove thatSσ satisfiesS1–S4.
ConsiderN ∈ M. If N ∩M(b) 6= ∅, then all elements
of σ intersect withN [useσ1], so

⋂

{S ∈ σ : S ∩ N 6=
∅} =

⋂

σ = M(b) [useσ1 andσ2], and consequently
Sσ(N ) = N ∩M(b), soS1 holds. Obviously, ifN = ∅
thenSσ(N ) = ∅, soS3 holds. Assume thatN 6= ∅ and
N ∩M(b) = ∅. ThenSσ(N ) is non-empty [useσ3], a
subset ofN , and closed as an intersection of closed sets.
We conclude thatS3 holds. LetN andS be elements of
M such thatS ∩ Sσ(N ) 6= ∅. On the one hand, since
{N ′ ∈ σ : N ′ ∩ S ∩N 6= ∅} ⊆ {N ′ ∈ σ : N ′ ∩N 6= ∅},
it follows that

S ∩Sσ(N ) = S ∩ N ∩
⋂

{N ′ ∈ σ : N ′ ∩N 6= ∅}

⊆ S ∩ N ∩
⋂

{N ′ ∈ σ : N ′ ∩ S ∩ N 6= ∅}

= Sσ(S ∩ N ).

Conversely, callNo =
⋂

{N ′ ∈ σ : N ′ ∩ N 6= ∅}. Then
Sσ(N ) = N ∩ No 6= ∅, and it follows from the as-
sumption thatS ∩ N ∩ No = S ∩ Sσ(N ) 6= ∅. Con-
sequently,

⋂

{N ′ ∈ σ : N ′ ∩ S ∩ N 6= ∅} ⊆ No, whence
Sσ(S ∩ N ) ⊆ S ∩N ∩No = S ∩Sσ(N ).

3Indeed, this requirement seems unnecessary, and even tends to hide
interesting structure, as it emerges in Theorem 10.



It is not clear to me whether any belief revision opera-
tor satisfyingR1–R8, or any selection function satisfying
S1–S4, can be generated by a system of spheres, or in
other words, whether Grove’s characterisation result [12]
for belief revision in classical propositional logic can be
extended (but see Proposition 12). The following results
should be seen as a first step towards answering this inter-
esting open question.

Theorem 10. Let Sb be a selection function satisfying
S1–S3 and defineσo ⊆ σ(b) as4

⋂

S∈M
S∩M(b)=∅

{N ∈ σ(b) : N ∩ S 6= ∅ ⇒ Sb(S) ⊆ N ∩ S}.

Thenσo is a system of spheres aroundM(b) and it is the
greatest (finest) such system for whichSb(S) ⊆ Sσo(S)
for all S ∈ M, with equality ifS = ∅ or S ∩M(b) 6= ∅.
Consequently, there is a system of spheres that generates
Sb if and only ifσo generatesSb, i.e., if Sb = Sσo .

Proof. It is obvious thatσo satisfiesσ1 andσ2. It is also
clear from the definition ofσo that for allS ∈ M:

Sb(S) ⊆
⋂

{N ∩ S : N ∈ σo andN ∩ S 6= ∅}. (6)

Since forS ∈ M, S 6= ∅ and thereforeSb(S) 6= ∅ [use
S1–S3], it follows that

⋂

{S ∩N : N ∈ σo andS ∩N 6=
∅} 6= ∅, so σo satisfiesσ3 and is therefore a system of
spheres aroundM(b). It also follows from (5) and (6)
that for the associated selection functionSσo : Sb(S) ⊆
Sσo(S) for all S ∈ M. Clearly, equality holds ifS = ∅ or
if S∩M(b) 6= ∅. Now letσ be a system of spheres around
M(b) such thatSb(S) ⊆ Sσ(S) for all S ∈ M. LetN
be an arbitrary element ofσ and letS ∈ M such that
S ∩M(b) = ∅. If N ∩S 6= ∅ then it follows from (5) and
the assumption thatSb(S) ⊆ Sσ(S) ⊆ N ∩ S, whence
N ∈ σo. We conclude thatσ ⊆ σo. The rest of the proof
is now trivial.

Corollary 11. A selection functionSb satisfyingS1–S4
can be generated by some system of spheres if and only if
for all S ∈ M such thatS∩M(b) = ∅ there is anN ∈ σo

such thatS ∩ N = Sb(S).

Proposition 12 gives a simple necessary condition for a
revision operator to be generated by a system of spheres.
This condition is satisfied for any revision operator satisfy-
ing R1–R8 in the case of belief models based on classical
propositional logic, as in that case the union of two spheres
is a sphere (the closure operatorClM is topological).

Proposition 12. A necessary condition for a selection
functionSb that satisfiesS1–S4 to be generated by some
system of spheres is that for allN ∈ M:

Sb(N ) = N ∩ ClM(M(b) ∪Sb(N )). (7)

4Note thatσo is closed under arbitrary intersections.

Proof. Assume thatSb satisfiesS1–S4 and that it is gen-
erated by some system of spheresσ. ConsiderN ∈
M. It is clear that (7) holds ifN = ∅ [use S1] or if
N ∩M(b) 6= ∅ [useS3]. Assume therefore thatN 6= ∅
andN ∩ M(b) = ∅. Then we know, using (5), that
Sb(N ) = N ∩

⋂

{S ∈ σ : S ∩ N 6= ∅}. Sinceσ(b) is
closed under arbitrary intersections, this means that there
is anS ∈ σ(b) such thatSb(N ) = S ∩ N . As a conse-
quence,Sb(N ) ⊆ S andM(b) ⊆ S, whence, sinceS is
closed,

M(b) ∪Sb(N ) ⊆ ClM(M(b) ∪Sb(N )) ⊆ S,

and if we take the intersection withN , taking into account
thatN ∩M(b) = ∅ andSb(N ) ⊆ N [useS1–S3],

Sb(N ) ⊆ N ∩ ClM(M(b) ∪Sb(N ))

⊆ N ∩ S = Sb(N ),

which completes the proof.

Example2. Consider the smallest (or coarsest) system of
spheres aroundM(b): σ = {M(b),M}. The correspond-
ing selection function is given by

Sσ(S) =

{

S ∩M(b) if S ∩M(b) 6= ∅
S if S ∩M(b) = ∅.

so we find for the corresponding revision operator:

R(b; γ) =

{

ClS(b ^ γ) if b andγ are consistent

γ if b andγ are inconsistent,

In the spirit of G̈ardenfors’ work [10], we could call this
R(b; ·) a ‘full meet revision’.
Example3. Consider a normal possibility distribution
π : M → K on the set of maximal coherent belief models
M. We assume that it satisfiesπ1 and that its cut sets are
closed:πα = {m ∈ M : α � π(m)} ∈ M for all α ∈ K.
This implies in particular thatπ2 is also satisfied. Define
the following collection of closed subsets ofM:

σπ = {πα : α ∈ K}.

It follows from π1 that for allα ∈ K, πα ⊇ π1K = M(b).
Since moreoverπ0K = M, we see thatσπ satisfiesσ1 and
σ2. Next, considerN ∈ M. Since it follows fromπ2
thatπ assumes its supremum on every closed setN ∈ M,
we have for allα ∈ K thatN ∩ πα 6= ∅ if and only if
α � Π(N ), whence

⋂

{πα : N ∩ πα 6= ∅} =
⋂

{πα : α � Π(N )}

= {m ∈ M : Π(N ) � π(m)}

and taking into accountπ2 and (4),

Sσπ (N ) = N ∩
⋂

{πα : N ∩ πα 6= ∅}

= {m ∈ N : Π(N ) = π(m)} = Sπ(N ) 6= ∅.



This proves thatσ3 holds, soσπ is a system of spheres
aroundM(b). We find for the corresponding selection op-
erator thatSσπ = Sπ.

10 Conclusion

I am convinced that the study of belief structures, their
mathematical properties and their mutual relationships,
can help us relate the many belief models that have been
proposed in the literature. I am aware that the present
study is far from complete, and that refinements and even
small modifications may be the necessary. One topic
where this may be the case, is belief contraction. We
have seen that for belief expansion and revision, many
of Gärdenfors’ results are valid in a broader context. Al-
though his proofs use the details of the underlying logical
language, I have shown that this is not necessary, and that
simpler and more powerful proofs can be found by using
a few general unifying properties. It turns out, however,
that in G̈ardenfors’ discussion of contraction crucial steps
are taken which are very specific to classical logic (using
the topological nature of the closureClM, for one thing);
and which are hard, if not impossible, to generalise di-
rectly. For one thing, preserving the relationship between
contraction and revision (Levi’s and Harper’s identities)
becomes problematical. More effort should be invested in
finding out what can said about belief contraction for more
general belief models, what can be preserved in the gener-
alisation, and how.
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