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Abstract sibility distributions, sets of probability measures, lower

| show that there is a common order-theoretic structure un_previsions, preference orderings on horse lotteries, and so
) ) .. on? Below, | make an attempt at beginning to answer this
derlying many of the models for representing beliefs in

the literature. After identifying this structure, and study- question, _b)_/ only assuming that t_he space of eplstemlc
ing it in some detail, | show that it is useful: it can be states satisfies the unifying properties of an abstract belief

structure, and in this context deriving a number of inter-

used to generalise the coherentist study of belief dynam_esting general results for belief expansion and belief revi-

ics (belief expansion and revision) by using an abstract ) . :
! L : sion. These results of course remain valid for the various
order-theoretic definition of the belief spaces where the; : . .
. : L instances of belief structures found in the literature.
dynamics of expansion and revision take place. Interest-
ingly, many of the existing results for expansion and revi- The order-theoretic structures and notions that | want to
sion in the context of classical propositional logic can be draw attention to in this paper, are defined and studied in
proven in this much more abstract setting, and thereforeSections 2, 3 and 5. In Section 4, | motivate the introduc-
remain valid for many other belief models, such as impre-tion of these structures by pointing to various important in-
cise probability models. stances in the literature on uncertainty modelling. The rest
of the paper deals with the dynamics of epistemic states:
Keywords. Belief model, belief revision, classical propo- Section 6 deals with expansion of belief models. Revi-
sitional logic, imprecise probability, order theory, possi- sion is discussed in Section 7, and in Sections 8 and 9,
bility measure, system of spheres. which focus on specific ways to construct revision opera-

tors. Section 10 concludes the paper.

1 Introduction I will make no effort to define or explain the many math-
ematical notions borrowed from order theory, as most of

Many of the models in the literature for representing a sub-them are (or deserve to be) well-known. | refer to a good

ject’s beliefs (and utilities) turn out to have an interesting introductory treatment (such as [4]) instead.

common order-theoretic framework. In this paper, | iden-

tify this framevyork, which leads me to thg introduction 2 Belief structures

and study obelief structuresRoughly speaking, these are

special collections of abstract entities calledief models Consider a non-empty sStwhose elements are callbg-
which share a number of (order-theoretic) properties. lief models They are partially ordered by a relatisnthat

| want to suggest here that these abstract belief models—is reflexive, transitive and antisymmetric, but need not be
or perhaps some more developed version of them—cafomplete: it is not required that any two elemeatand
form the basis for, or can at least be helpful in, a gen-b of S should be comparable in the sense that b or
eralised study of the dynamics of epistemic states, whichb < a. A first important assumption is that for any sub-
has received much attention in the Al literature since thesetA of S, its supremumsup A and infimuminf A with
publication of Gardenfors’ book [10] on belief change, al- respect to this order exist, or in other words:

ready nearly 13 years ago. What can be said about the

dynamics of belief change when the space of epistemicS1. (S, <) is a complete lattice.

states in which this dynamics takes place is more general

than that considered bydBdenfors and others? What hap- Let us denote the top, or greatest elemenf S of this
pens when the epistemic states we are interested in are nabmplete lattice byig. Its bottom, or smallest element,
sets of sentences in classical proposition logic, but posinf S is denoted by)s. Note that alsalg = inf () and



0s = sup (). The supremum, or join, of two belief models subsetC of C, its supremum in this structure is given by
a andb is also denoted by — b and the infimum, or meet, Clg(sup C), wheresup C is the supremum o€ in the
bya ~b. complete latticeS, <).

Among the belief models, there is a sub6eC S of mod- Recall that the tofd s is assumed to represent contradic-
els that are calledoherent Coherent belief models are tion, or inconsistency. The closure operatig allows us
considered to be more perfect than the others, which willto take this a step further.

be calledncoherent A second central assumption is that: pefinition 2. A belief modela € S is calledconsistentf

. _ o Clg(a) € C, that is,Clg(a) < 1g. Two belief models:
S2. Cis closed under arbitrary non-empty infima: forany andb in S are said to beonsisteniwith one another) if
non-empty subset’ of C, inf C € C. a — bis consistent. More generally, a collectiSrnc S of
belief models is calledonsistenif sup C is a consistent
The belief modellg will represent contradiction, so we belief model.
assume that: . ) ] ]
Coherent belief models are in particular consistent. The
S3. (C, <) has no top. In particulat is not a coherent following proposition _expllcates the relgtlonshlp_between
; . coherence and consistency: the consistent belief models
belief model:1g ¢ C. ,
are the ones that are below some coherent belief model.

This means that the ordered structy@, <) is a com- ProposiFion 2. Let (_S,C,g) be a bglief structure. For
plete meet-semilattice but not a complete lattice: every@ny belief modek in S, the following statements are
non-empty subset o has an infimum but not necessarily €quivalent:

a supremum in this structure. On the other hand, the set

C = CU({1g} provided with the ordering is a complete 1. alis consistent;
lattice, whose infimum (but not necessarily its supremum) 2. Clg(a) < 1s;
coincides with the infimum ofS, <). The relation< onC 3. a < b for some coherent belief modek C.

could be interpreted roughly as ‘is less informative than'.

Definition 1. If (S, <) andC satisfy requirements S1-S3, Proof. Assume that is consistent. The®lg(a) € C
then we call the tripléS, C, <) abelief structure whenceClg(a) < 1g. Next assume thaflg(a) < 1s.
Thena < Clg(a) andClg(a) € C, which means that the
We can now introduce a closure operafdis: S — S as  thjrd statement holds. Finally, assume that the third state-
follows: for any belief modeb in S, ment holds. Then by Proposition @ls(a) < Clg(b) =
Clg(b) = inf{c € C: b < ¢}, b < 1g, whenceClg(a) € C, soa is consistent. O

This operator has the following immediate properties.  tradictory modells. Note thatls is the only contradictory

. . or inconsistent model ilC. In summary, the idea behind
Propos!tlon 1. Let (S, C.’ <) be a belief structure. For closure is that it takeS to the informationally equivalent
any belief models andb in S,

structureC, wherelg is the only inconsistent model. Also
note that ifa andb are consistent, the@lg(a — b) is a

a < Cls(a); coherent belief model, and it is the supremumCo§(a)
if a < bthenClg(a) < Clg(b); and Clg(b) in the complete meet-semilattiq€s, <). It
. Clg(Cls(a)) = Cls(a); could be interpreted as the least informative coherent be-

lief model that is at least as informative @aandb.
. Clg (a ~ b) = Cls(ClS (a) ~ Cls(b));

. Clg(a) = aifand only if a € C;

g~ w NP

3 Strong belief structures and their duals

This justifies our callingClg a closure operator. The un-
derlying idea is that for any. € S, a and Clg(a) are
equally informative. The closur€lg takes any belief
modela with Clg(a) < 1g into a coherent belief model
Clg(a) that is equally informative. We do not require that
Clg(0s) = 0s: b, = Clg(0g) is the smallest coherent
belief model, also called theacuous belief model M={meC: (VeecC)(m<c=m=c)}.

There is no greatest (most informative) coherent belief
model: the partially ordered sé€, <) has no top. But

it may have maximal elements, that is, elementghat
are not dominated by any other elementifl denote by

M the (possibly empty) set of these maximal elements:

The closure operatdrls allows us to give an expression We can render the notion of a belief structure much more
for the supremum in the complete lattic€, <): for any powerful by making an extra assumption, which concerns



precisely these maximal elements. We may require thatt will be very important to pay special attention to the

they can be used to construct any coherent belief model:

S4. (C, <) is dually atomic M # () and for allc € C,
c¢=inf{m € M: ¢ <m}.

Definition 3. A belief structure(S, C, <) for which the
additional requirement S4 is satisfied, is calledt@ng
belief structure

We also introduce the following notation: for any belief
modelb € S,

M) ={m e M: b < m}.

M(-) can be interpreted as a map fr@hto the power set
(M) of M. It will play an important part in the inves-
tigation of the structure ofS, C, <). Note that ifb € C
then S4 implies thatV1(b) # 0. For if M(b) = 0, then
inf M(b) = 1g > b. In other words, in a strong belief

direct images of the setS andC under the map\1(-):

5 — M(C)

{M(c): c€ C} = M(S)
M= M(C) = {M

(¢): c€ C}.

Both 9t and91 are subsets gf(M), i.e., sets of subsets of
M. Moreover,M(b,) = M, soM € 9. Also, M(1s) =
() belongs taNt but not toMt, whencet = M\ {0}.

A crucial property of))t is that it is an intersection struc-
ture with topM, or in other words that it is closed un-
der arbitrary (also empty) intersections. Consequently, the
partially ordered se{dt, C) is a complete lattice, where
intersection has the role of infimum. This is made more
explicit in the following theorem.

Theorem 5. Let (S, C, <) be a strong belief structure.
Then the following propositions hold.

structure every coherent belief model is dominated by at 4 2 is a Moore collection of subsets M [4, 14]: it

least one maximal coherent belief model. Moreover, there

is the following extension of Proposition 2.

Proposition 3. Let (S, C, <) be a strong belief structure,
and leta be a belief model ir8. Then each of the three
statements in Proposition 2 is equivalenttd(a) # (.

Proof. It suffices to prove thaM (a) # 0 is equivalent to
the third statement. Assume that there is & C such
thata < 0. It follows from the definition ofM(-) that
M(b) € M(a). We have argued above that foe C, S4
implies thatM (b) # (), whenceM(a) # 0. Conversely,
if M(a) # 0, thena < inf M(a) andinf M(a) € C. O

is closed under arbitrary (and therefore also empty)
intersections.

The complete lattice$C, <) and (M, C) are du-
ally order-isomorphic, with dual order isomorphism
M().

. Consider the operato€ly: (M) — (M) de-
fined byCly(N) = M(inf V) for all N C M.
Then Cly; is a Moore closure [4, 14] andt is
the associated set of closed setft = {N C
M: Clm(N) = N}

4. All singletons{m}, m € M, are closed.

2.

There is a very close relationship between the closure opProof. We first prove the first statement. LE; : j € J}

eratorClg and the map\ (-).

Proposition 4. Let (S, C, <) be a strong belief structure.
Then for alla € S:

1. M(a) = M(Clg(a));
2. Clg(a) = inf M(a);
3. a € C & a = inf M(a).

Proof. We begin with the first statement. It follows from
Proposition 1 that for alb € C, a < b < Clg(a) < b,
and sinceM C C it follows that for all m € M,
m € M(a) & m € M(Clg(a)). We continue with
the second statement. First, assume tha inconsis-
tent. Then on the one haris(a) = 1g and on the other
handM(a) = (), by Propositions 2 and 3. So in this case,
inf M(a) = inf ) = 1g = Clg(a). Next, assume thatis
consistent. Then the first statemewt(a) = M(Cls(a))
implies thatinf M(a) = inf M(Cls(a)) = Clg(a), tak-
ing into account S4 and the fact th@is(a) € C, by

be a family of elements . If J = 0, then(;_, N; =
M = M(b,) € M. If J # 0, then leth; = inf N; € C,
whence by Proposition 4V, = M(b;) for all j € J.
Consequently,

N; = () M(b;) = M(supb;) € M,
jed jes et

sincesup,c; b; € S. We now turn to the second state-

ment. Consideb, andb, in C. First, ifb; < by then obvi-
ously M(by) € M(b1). Conversely, itM (by) € M(by),

it follows from Proposition 4 thab; = inf M(b;) <
inf M(b2) = be. So we conclude that

This means that(-) is a dual order-embedding 6€, <)

into (M, C). It is furthermore surjective, sinc® =
M(C). We conclude thatM(-) is indeed a dual order
isomorphism. To prove the third statement, we first show

Propositions 2 and 3. The third statement is an immedi-that Cly; satisfies the defining properties of a Moore clo-

ate consequence of the second. O

sure. Consider a subsaf of M. For anym € A we



have thatinf ' < m som € M(inf V), and there-
fore V' C Clm(N). Moreover,a = inf N € C, so
a = inf M(a) = inf M(inf ) by Proposition 4. Con-
sequently,Clpp(N) = M(a) = M(inf M(inf NV)) =
Clm(Clp(WN)).  Finally, for any subsetsV and S of
M such thatV/ C S, we haveinf S < inf A/, whence
M(inf N) € M(inf S), or Cly(N) € Cly(S). This
means thatCly; is indeed a Moore closure. We now

tures. In this section, | briefly discuss a number of exam-
ples, without aiming at completeness. They provide the
main justification for the introduction and study of the ab-

stract notions in the previous sections.

Classical propositional logic

Consider an object languadeof well-formed formulae,

look at its associated set of closed sets. Consider a subyr sentences, in classical propositional logic with the usual

setA of M. Then it follows fromA = Cly(N) that
N = M(inf V), soN € M sinceinf ' € C. Con-
versely, ifA” € 9, then\V = M (a) for somea € C, and
by Proposition 4¢ = inf M(a) = inf N. Consequently,
N = M(a) = M(inf V) = Clpm(N). This means that
M = {N C M: Clm(N) = N'}. The fourth statement
follows at once fromM (m) = {m} forallm e M. O

The elements ofit are therefore the closed sets of maxi-
mal elements ofC, <). Sincelg and() correspond in the
dual order isomorphism, the partially ordered gets <)
and (91, C) are dually order-isomorphic as well, with es-
sentially the same dual order isomorphigwi(-). Other
correspondences abg and M.

The complete latticén, C) is called thedual belief struc-
ture of (S, C,<). Elements offit will also be called
spheresAs 15 is the only inconsistent belief model @,
sof is the only inconsistent spherefit, and it represents
contradiction.M is called thevacuous sphereand it cor-
responds to the least informative coherent belief mégel
Singletons{m} correspond to the maximally informative
coherent belief models, € M.

axiomatisation (see for instance [4]). We call any subset of
L, i.e., any set of sentences, a belief mod&hese belief
models are partially ordered by set inclusian We call

a set of sentences coherent if it is logically closed, that
is, closed under conjunction and modus ponens (implica-
tion). Thus, a coherent set of sentences is what logicians
sometimes call aheory, and the partial orde€ for co-
herent models indeed has the interpretation ‘is less infor-
mative than’. The intersection (the infimum far) of a
collection of coherent belief models is still coherent, and
the corresponding closure operator is of course logical clo-
sure. Consistency clearly amounts to logical consistency.
By applying the Boolean Ultrafilter Theorem [4, 14, 18]
to the Lindenbaum algebra associated ithwe see that
there are maximal coherent sets of sentences, and that
every coherent set of sentences is the intersection of the
maximal coherent sets including it. These maximal logi-
cally closed sets of sentences are sometimes céfest-
)complete theoriesadding any sentence to them leads to
logical inconsistency. We may conclude that the structure
that appears in the context of classical propositional logic
is astrong belief structure It is interesting to note that
here, the maximal coherent belief models, which form the

We have seen that taking infima is very easy in the struc-basis for the dual structure, are sometimes ca(fmssi-

ture C: they coincide with infima irS. But for taking
suprema irC, we need to invoke the closure operafig.
As an example, for two coherent belief modeland b,
their supremum irC is given byClg(a — b). But the cor-
responding operation is much easier in the dual structure
M(Clg(a — b)) = M(a — b) = M(a) N M(b), orin

ble) worlds It can be shown that the closure operator on
the dual structure is topological, or in other words that the
union of two closed sets of possible worlds is closed.

Imprecise probability models

other words, we just have to take intersections. To sum-n his important work on imprecise probabilities [18], Wal-

marise, the most informative coherent belief model that is
at most as informative ag andb is better described in
the ‘direct structure’ ¢ —~ ], than in the dual structure
[Clp (M (a) UM(b))]; and the least informative coherent
belief model that is at least as informativesaandb is has

a more convenient representatio[a) N M(b)] in the
dual than in the direct structur€ls(a — b)].

4 Examples of belief structures

Most of the mathematical models for representing beliefs
(or uncertainty) in the literature that | am aware of con-
stitute belief structures, apart from the ones that enforc

precision or completeness, such as the Bayesian model.

Many important ones even give rise to strong belief struc-

ley discusses a number of essentially equivalent imprecise
probability models: lower previsions, upper previsions,
sets of almost-desirable gambles, sets of strictly desirable
gambles, almost-preference and strict preference relations.
Lower and upper probabilities are special cases of these,
and are less expressive. | shall concentrate here on lower
previsions, but related considerations can be made for the
other models. Consider a non-empty §et A bounded
real-valued map o) is called a gamble, and it repre-
sents an uncertain reward. A lower prevision kn(a
belief model), is a map from a set of gamblsto the
extended real intervdl-oo, +-00]. Lower previsions can

be partially ordered point-wise, and thus constitute a com-
lete lattice. The ordering indeed has the interpretation ‘is

1Gardenfors [10] speaks of apistemic state



less informative than’ or ‘is less precise than’. The coher-Sections 3.7 and 3.8]: one item is almost-preferred to a
ent belief models are the lower previsions that are cohersecond item if it is the limit of a sequence of items that
ent in Walley’s sense [18, Section 2.5], and the point-wiseare really preferred to the second item. This amounts to
infimum of a non-empty collection of coherent lower pre- replacing the Archimedean axioms in [1, 15] by a closed-
visions is coherent. The consistent models turn out to beness axiom, and keeping all the other axioms.

the lower previsions that avoid sure loss [18, Section 2.4],

and the closure operator is nothing but natural extensior5 Belief substructures

[18, Section 3.1]. The maximal coherent belief models are
the linear previsions off [18, Section 2.8], which are the
precise probability models. A coherent lower prevision
is the point-wise infimum of its set of dominating linear
previsions, so lower previsions constitute a strong belief
structure. The spheres are the weak*-closed convex se
of linear previsions, and closure in the dual structure i
therefore convex closure, and is not topological.

In order to investigate the relations between the many be-
lief structures in the literature, it is useful to be able to
express that one belief structure is more general than an-
other, or extends it in some way. This can be done with
t§1e notions of belief substructures, belief embeddings and
Sbelief isomorphisms. | want to stress that only a few ba-

sic notions are introduced here: the ideas hinted at below

could (and probably should) be worked out and studied in
Several other models, briefly much more detalil.

Definition 4. Let <Sl, Cl, §1> and(Sg, 027 §2> be belief
structures. TherS;, Cy, <;) is called abelief substruc-
ture of (Sy, Co, <o) if

The confidence relations introduced and studied in [5]

constitute a strong belief structure. So do Giles’ so-called

possibility functiong11], which, with hindsight, are pre-

cisely the coherent upper probabilities on a field of sets. .

Ordinal possibility measuref, 9] lead to a belief struc- 1. 81 € 83,15, = s, and0s, = 0s,;

ture that is not strong: in this structure the belief models 2. (S1, <1) is a complete sublattice @82, <s);

are maps from the power sgf(2) of some non-empty set 3.C;=C2N8S;.

Q) to a complete lattice (or chain), <). They can be

ordered point-wise (we consider the dual, or reversed, or{f the belief structuregS;, Cy, <;) and(S,, Cs, <,) are

dering), and the coherent belief models are the noffal  strong, then(S,, C;,<,) is called astrong belief sub-

valued possibility measures. These are closed under instryctureof (S5, Cy, <,) if in addition:

fima (i.e., under point-wise suprema), and the correspond-

ing closure operator can be related to possibilistic exten- 4, M, = M, N S;.

sion [3]. The same holds for Spohrogdinal conditional

functions[17], which are very closely related to, but less Definition5. Let(S;, Cy, <1) and(S;, Cs, <») be belief

expressive than, ordinal possibility measures. structures. Then a map: S; — S, is called abelief
. . i i embeddingf (S;, Cy, <1) in (S3, Cq, <o) if

Among the hierarchical uncertainty models, tpedce

functionsintroduced by Walley and myself [8] constitute 1 ¢ is a bottom and top preserving order embedding of
a belief structure that is not strong. On the other hand, the (S1,<1) in (So, <o), i.e., d(ls,) = 1s,, $(0s,) =
more generalower desirability functiong7] do lead to 0g and -

a strong belief structure, for which the maximal coherent :

belief models are essentially the Bayesian second-order (V(s,t) € ST)(s <1 t & d(s) <2 B(1)).
probabilities.

Aumann’spreference-or-indifference relatiortefined on 2. ¢(C1) = C2No(Sy).

a mixture space [1, 2] lead to a belief structure, and so
do thepreference relation®n horse lotteries studied by K ; .
Seidenfeldet al. [15]. In both cases, the belief structures STONG: themp: 81 — S, is astrong l.J(_ahe.f embeddingf
seem not to be strong, but the authors do pay attentiortS1: C1» 1) In (S2, G2, <o) if in addition:

to representation of their belief models as intersections
(i.e., infima) of maximal belief models, and are able to
derive interesting but partial representation results. In any ) L .
case, and although the authors would probably object td’ MOreover¢ is not only injective, but also surjective,
this (see the discussion in [15, Section VI]), it is possible @Nd therefore an order isomorphism betwe, <i)
to get to a strong belief structure by looking at almost- @1 (S2, <2), then¢ is called a(strong) belief isomor-

preference rather than real prefereAdethe spirit of [18,  Phism and the (strong) belief structureS,, Cy, <,) and
(S2, Cy, <) are calledbelief isomorphic In that case,

2This means that we look at a different notion of preference. ?(S1) = Sa, ¢(Cq) = Co andp(M;) = M,.

If the belief structure$S;, C;, <;) and(S,, Cs, <) are

3. ¢(My) = Mz N ¢(Sy).




The most important part of a belief structure is its €et  abilities on.A, and the elements of its subg8t are the

of coherent belief models. Thus it is possible that two be-coherent) — 1-valued lower probabilities otd. The set

lief structures have essentially the same set of coherent bévl, contains the finitely additive probabilities of, and

lief models, although they differ as far as their incoherentits subseM; the ones that aré— 1-valued.(S;, C;, <;)
models are concerned. Since most types of reasoning onlis a strong belief substructure ¢85, C, <2). In other
involve the coherent models, we need some way to recogwords, using as belief models lower probabilities that only
nise that these two structures are identical in what matterassume the valugsand 1, leads to a strong belief struc-
most. ture that can be extended to, or is embedded in, the strong
belief structure that results from using more general lower

Definition 6. Two belief structures(S;,C;,<;) and
probabilities.

(Sq,Caq, <) are cglled coherencg isomorphidf the
complete lattices(C,,<;) and (Cy, <;) are order- As a final step, we relate the strong belief structures
isomorphic. (p(A), F(A),C) and (S1,C;,<;). Consider the map

) ) ) ¢: p(A) — S; that takes a subsét of A to its indicator
This means that in the two belief structures, the coherentnction 1,5 #(B) = I is a0—1-valued lower probability

models, the closure operators, the sets of maximal eleyn 4 and for allA € A:
ments and therefore also their dual structures (if they exist)

are essentially the same. 1 fAeB

As mentioned in Section 4, most of the imprecise probabil- 0 fAZB.

ity models introduced by Walley [18] lead to strong belief

structures: e.g., lower previsions, upper previsions, sets ofTheng is an order isomorphism between the complete lat-
almost-desirable gambles and almost-preference relationsices (p(.A), C) and (S, <;). Walley [18, Section 2.9.8]
These structures are all coherence isomorphic, and thefas essentially shown thaimaps the filters o to the co-
have essentially the same dual structure: weak*-closedherentd — 1 valued lower probabilities, and the ultrafilters
convex sets of linear previsions. Among these structuresof A to the0 — 1-valued finitely additive probabilities. In
the ones built on lower previsions and upper previsions arether words, the strong belief structurgg.A), F(.A), C)
also belief isomorphic. and(S1, Cq, <;) are belief isomorphic.

P(B)(A) = {

The following important example explains how the strong We conclude that the strong belief structure built on clas-
belief structure built on classical propositional logic can sical propositional logic can be embedded in the one built
be seen as a substructure of the one built on the abovesn lower probabilities. In this sense, the theory of coherent
mentioned imprecise probability models. lower probabilities is a generalisation of classical proposi-

Examplel. We proceed in three consecutive steps. First oftional logic. In this embedding, precise probabilities play
all, consider the strong belief structure based on classicalhe role of maximal elements, and correspond to the max-
propositional logic discussed in Section 4. By the Stoneimal consistent logically closed sets of sentences. In this
Representation Theorem applied to the Lindenbaum algelight, it seems strange that a number of Bayesians continue
bra of the systend [4], there is some sef (its set of  to claim that probability measures are threly reasonable
possible worlds) and a fieldl of subsets of2 such that  extension of classical logic able to deal with partial be-
there is a one-to-one correspondence between sentencesliifs: how many logicians would claim that the only ra-
L—after identifying syntactically equivalent sentences— tional logically closed sets of sentences are the maximal
and elements ofd. Moreover, (i) sets of sentences (i.e., ones—or that the only rational theories are complete?
belief models) correspond &ubsetf A4; (i) logically

closed sets_ of sentences (i_.__e., coh_erent belie1c models) Cos  Belief expansion

respond tdilters of A; and (iii) maximally consistent log-
ically closed sets of sentences (i.e., maximal coherent bel- now want to show that it can be useful to look at ex-
lief models) correspond toltrafilters of A. If we denote . . . :

the set of subsets ol by p(A) and its set of filters by isting types belief of models as special cases of the ab-

F(A), then (p(A), F(A), C) is a strong belief structure, stract orderjtheoretlc structures mtroc_iuced apove. This is
. : e . ; . because quite often the exact underlying details of how be-
which we have argued is belief isomorphic—after identi- . : -
. . ! lief models are constructed is not really of crucial impor-
fying equivalent sentences—to the strong belief structure . . . .
. g . tance; what matters is the reasoning, or inference, method
based on the classical propositional logic sysiem : .
and that is captured completely in the closure oper@igr
As a second step, I&; be the set of maps fromd to the  and its dual counterpa@ily (if it exists). We shall see be-
real unit interval0, 1], and letS; be the set of maps from low that in a number of interesting cases, only the order-
A to the doubletor{0,1}. Both the orderings<; on S; theoretic properties of these closure operators are relevant,
and <, on S, are point-wise. The sdC, is the set of and not the additional properties which they may derive

coherent—in the sense of [18, Section 2.7]—lower prob-from the underlying details of the belief models.



In the sections that follow, | generalise (part of) the work E(b;-), given by:

done by Grdenfors [10] on belief expansion and revision

of epistemic states in the context of classical propositional E(b;y) =Cls(b—17), ~v€S.

logic, where his so-calle@pistemic stateare logically

closed sets of sentences. In principle, nothing prevents uProof. Note thatClg(b — -) obviously satisfiesz 1-E5.
from considering as an epistemic state a more general typ®loreover, for anyy € S it follows from E2 and E3 that
of belief model, such as the imprecise probability modelsp — ~ < E(b;~) and from E1 and Proposition 1 that
or the preference orderings discussed in Section 4. Indeedlg(b — v) < E(b;y). From E6 we then deduce that
these models are also intended to represent the beliefs (ang(b; ) = Clg(b — 7). O
utilities) of some subject. But how do we then define be-

lief expansion and revision, and how cadr@enfors’ co- 1t is interesting to note that ib and » are consistent

herentist axioms for belief change be generalised? Below bls(b — ) is the supremum df andCls(7) in the com-
sketch how this could be done, and thereby generalise thgjete join-semilatticeC, <): it is the smallest (least in-
work done by Moral and Wilson [13] on belief revision o :mative) coherent belief model that is at least as infor-
when the epistemic states are closed convex sets of probaative ag andCls(y). In the dual structure (if it exists),
bilities. Due to limitations of space, | shall restrict myself expansion takes a very simple form: expanding the sphere

to pointing out the more striking results, and give only lit- M(b) € M with the sphere\" € 3 amounts to taking
tle further motivation. The definitions and results below {qiy intersectionM (b) N .

(and the order-theoretic simplicity of their proofs) should

be compared with the discussion i@@enfors’ book [10] . o

in order to be fully understood. | hasten to add that my 7/ Belief revision

concentrating on &rdenfors’ work does not imply that |

think he had the final word in the matter of belief change, We now turn to belief revision, where a coherent belief

nor that | believe his approach and his axiom systems to bénodel b is revised into a belief modél' under new in-

the only reasonable ones; by extending his work | mainlyformation in the form of belief models € S. We again

want to illustrate the usefulness of order-theoretic machin-represent the action of the new informatiore S on the

ery introduced above. coherent belief moddl by an operatoR(b;y): S — S,
, ) , called(belief) revision operator Inspired by Grdenfors’

Let me start with belief expansion. Assume that we have,

. , , work, we propose the following postulates for belief revi-
a coherent belief modél € C, and that new information

. : . sion: forb in C, and for ally in S,
is obtained, which can be represented by a (not necessar-

ily coherent) belief model € S. This new information —
takesb to a new coherent belief modél. We represent R1. R(b;y) € C;

the action of new informationy € S on the coherent belief R2. v < R(b;7);

modelb by an operato#i(b; -): S — S, called(belief) ex-  pg. R(b;y) < E(b;7);

pansion operatarin the spirit of the work of @rdenfors, ) B )

we may require that such an operator should satisfy theft4 if b andy are consistent thefi(b; v) < R(b; 7);
following postulates: fob andc in C, and for ally € S, R5. R(b;~) isinconsistent if and only i is inconsistent;

R6. R(b;y) = R(b; Clg(7));

IN "=

E1. E(b;v) € C;
o (< ;)(b . RT. R(b;y — 6) < B(R(b;);6);
R R8. if R(b;~) andd are consistent theB (R(b;~); ) <
E3. b < E(b;7); R(b;y — 0).
E4. if vy < bthenE(b;v) = b;
E5. if b < cthenE(b;y) < E(c;v); R1-R8 again correspond one by one t@@enfors’ revi-

sion postulate$K*1)—(K*8), in that order. Here too, the
correspondence is straightforward if (i) we recall that revi-
sion by a proposition has been generalised to revision by a
. , _ belief model, (ii) we invoke the notion of (in)consistency
FE1-FE6 correspond one b_y one toa@lenfors’ expansion capture the essence of the postuldi€s4) and (K*5)
postulateS K*1)—(K™6), in that order. The correspon- jo1ving the negation of propositions, and (iii) we realise
dence is obvious if we recall that expansion by & proposi-a¢ the conjunction of two propositions corresponds in our
tion has been generalised to expansion by a belief mOdel-Ianguage to the join of two belief models: a belief model
Theorem 6. Let (S, C, <) be a belief structure, and con- generalises a set of propositions, and revision by a con-
sider a coherent belief modél € C. Then the postu- junction of two propositions means revision by both the
lates F'1—-E6 single out a unique belief expansion operator propositions, i.e., by their ‘union’.

E6. E(b;-) is the point-wise smallest (least informative)
of all the operators satisfying1-FE>5.



The more striking results can be derived if the belief struc-&4. if SN &,(N) # D thenS,(N' NS) = SN GSy(N).

ture (S, C, <) is strong. Let us reformulate these axioms

into their dual versions. It should be noted tif&dtand26  Since a selection function is clearly not uniquely defined,
are necessary for this to be possible, as we can only repthe revision axioms allow for more than one type of revi-

resent elements df by closed sets of maximal coherent sjon, We explore a few interesting revision methods in the
belief models. So, whenever we work in the dual space;following sections.

with adual revision operatofR(M (b);-): M — I, itis
implicit that R1 and R6 hold. It is easily verified that the
other postulates can be reformulated in the following way:
for all A andS in 90,

8 Revision using linear orderings

In this section, | show how a revision operator can be con-

. structed using a linear ordering on the set of maximal el-
2. ; -
A2 RMb)N) < N ementsM. The discussion here is inspired by@@enfors
M3. M(b) NN C R(M(b); N); relational partial meet contractionfl0, Section 4.4] and
R4. if M(b) NN # 0 thenR(M(b); N) C M(b)NN; by the work of Moral and Wilson on revision based on

C
M5. R(M(b); N) = 0 if and only if N = 0; linear orderings of probabilities [13].
R7. RM(B);N)NS CRM(D); N NS); Let us ?ssume thc?t the elemelm_sof l\r/]I are orftljer_ed by
a complete preorder, i.e., a relation that is reflexive, tran-
RE. if RM(b); V) m S # 0 thenRM(); N N S) € sitive and complete, but not necessarily antisymmetrical.
RM(b);N) N This is equivalent to assuming that there is a complete
) o chain (K, <) and a mapr: M — K which induces an
| now propose a very particular type of dual revision op- ordering onM through the values it takes dii. We de-

erator, vyhich wiII. turn out to be sufficiently general. The gt the top of K, <) by 1x and its bottom by .
central idea behind it is that for evetye C (or every o . _
M (b)) there is aselection functiors, : 9 — M1 that se-  We can use the ordering induced M to define a partic-

following conditions: S.(N) = {m € N': (vin € N)(r(n) < w(m))}

S1. if M(b) NN # 0 then&,(N) = M(b) NN; ={m e N:IIN) 2 n(m)} 4)
&2. if M(b) NN = 0 andN # () thenS,(N) is some ={m e N: 1I(N) = m(m)}

non-empty closed subset.af, and wherell(N) = sup,,c 7(m), soll is the K -valued pos-
63. &,(0) = 0. sibility measure, defined ap(M), with distributions [6].

We can now ask what propertiesmust have forS,, to
A dual revision operatoR(M(b); -) can now be defined satisfy&1-&3. Itis no essential restriction to assume that
as follows: for any\ in 9, IT is normalin the sense thdll(M) = sup,,,cps 7(mM) =
1x.
Theorem 8. Let (S, C, <) be a strong belief structure,
For the corresponding revision operatB(b;-) we then and letb € C be a coherent belief modt.el.. _Letbe an
have: M — K-map such that thé(-valued possibility measure
R(b;v) = inf &, (M(7)). A3) IT with distribution 7 is normal. Consider the selection
’ function S, defined by(4). Then&,. satisfiesS51-&3 if

There is the following general representation theorem. In@nd only if
the dual structure, its proof is a matter of straightforward

R(M(b); N) = Gp(N). ()

verification, and it is therefore omitted. wl. M(b) = {m € M: n(m) = 1x }; and
Theorem 7. Let (S, C, <) be a strong belief structure 2. for everyN in M, {m € N: w(m) = II(N)} is a
and letb € C be a coherent belief model. A dual revi- non-empty closed subset/dt

sion operatorR(M(b); -) satisfiesR2—R5 if and only if

there is a selection functio®, satisfyingG1-63 such  |n that case the associated dual belief revision operator
that R(M(b);-) = &;(-). Equivalently, a revision oper-  satisfiesR2—R5 and R7—R8. The associated belief revi-
ator R(b;-) satisfiesR1-R6 if and only if there is a se-  sjon operator then satisfig®1—RS.

lection function&, satisfyingS1-63 such thatR(b; ) =

inf &,(M(-)). Moreover,R(M(b);-) also satisfiegi7—  Note that the second condition implies in particular that
M8, and R(b; -) also satisfiesR7—R8, if and only if the  the mapr assumes its supremum on every closed subset
selection functior®, satisfies, for all\VandS in 9t of M.



Proof. Assume thatS,, satisfies61-G3. SinceM N following definition generalises Grove’s notion of a sys-

M(b) = M(b) # 0, it follows from &1 that tem of spheres, but note that contrary to Grove, | do not
require that the elements of a sphere should be linearly or-
M(b) = M N M(b) = &.(M) dered by set inclusiof.
={m e M: w(m) =1k}, Definition 7. Let (S, C, <) be a strong belief structure

and letb € C be a coherent belief model, so thet(b) #
which tells us thatr1 holds. Next, consider any € 9, 0. We callo C 9t asystem of spheresoundM (b) if
then N # ( and using&1 and &2, 6, (N) = {m €
N: m(m) = II(N)} is a non-empty closed subset.df, ol. o Co(b),i.e.(VN € o)(M(b) CN);
so 72 holds. Conversely, assume that and x2 hold. .
Consider an element of M. If AV =  then obviously 02. M(b) € o andM € o
S, (V) = 0. If N N M(b) # 0, then it follows fromr1 03 (N NS: S € candNV NS # 0} # 0 for all
that on the one hand(N\) = 1k, and consequently on N em.
the other hand

Given a system of spheresaround M (b), we define a
S,(N)={meN:n(m) =1} =NnNM(b). selection functiors,, in the spirit of Grove [10, 12]: for
anyS € 9,
If NN M(b) = 0andN # 0, we know fromn2 that
G.(N) = {m € N: n(m) = II(N)} is a non-empty So(S) = {SNN: N ecandSNN # 0} ©)
closed subset afV. We conclude tha&,. satisfies&1—
63: G, is a selection function, and it follows from The- =Sn ﬂ{N €o: SN Z0}.

orem 7 that the associated dual belief revision operatorrhjs selection leads to a very convenient type of revision
RM(b);-) = &4(-) satisfiesR2-R5. To prove that it gperator, as the following theorem shows.
also salisfiesi7—R8, we must show thab, satisfiesSd. Theorem 9. Let (S, C, <) be a strong belief structure and

ConsiderV' ands in % and assume thatN & (V) # 0. letb € C be a coherent belief model, so th&t(b) # 0.

T?IS) |rEpI1|_}a(sNt)h a\'fv:;rceellf( f/l)m_GH(X/r; i)sug;’rfzgf Leto be a system of spheres around(b) # () and letS,,
Wuvgntl_ ' o ' be the associated selection function, defined®y Then
g Y. 6, satisfies&1-64, and the corresponding dual belief
G.(NNS)={meNNS: n(m)=TLNNS)} revisior:j.opeéa'fprfsati.sf.ie%{2—9%5 tan?;)%?—i)%f_. The}ggr—
— {m eNNS: (m) = I} responding belief revision operator then satisfiels-RS.

=Sn{meN:n(m)=1IWN)} Proof. We only have to prove thab,, satisfiesG1-G4.
=8N6,(N), Consider\N' € M. If N N M(b) # 0, then all elements

of o intersect withV [usec1], so(J{S € o: SNN #
S0 &, satisfiesS4. The rest of the proof is now immedi- 0} = No = M(b) [usesl ando2], and consequently

ate. O &,(WN) =N N M(b),soS1 holds. Obviously, i\ =
then&, (V) = 0, so&3 holds. Assume that/ # ) and
9 Revision using a system of spheres NN M(b) = 0. ThenS,(N) is non-empty [user3], a

subset of\/, and closed as an intersection of closed sets.
| have called the elementd” of a dual belief structure We conclude tha®3 holds. Let\ andS be elements of

(9, C) spheresbecause they are the natural generalisa->t ?UCh thaES N &, (N) # 0. O';‘ the one hand, since
tions of the spheres studied by Grove [12] in the Context_{N €a: N'NSNN #0} C{N" € o: N'NN # 0},
of belief revision in classical propositional logic (see also 't follows that

[10, Section 4.5]). In this section, | show that the gen- g~ g N)=8SnANN ﬂ{/\/’ co: N'NN # 0}
eralised spheres can also be used to construct a revision 7

operator. QSﬁNﬂﬂ{N’ea:N’ﬁSﬂNyé@}
Letb € C be a coherent belief model, got(b) # 0. We =G, (SNN).
call o(b) the collection of spheres that includé (b):

Conversely, callV, = N{N’ € o: N" NN # 0}. Then
o(b) = {N € M: M(b) C N}, S,(N) = NNAN, # 0, and it follows from the as-
sumption thatS NN NN, = SN S, (N) # 0. Con-
so the elementd/ of o(b) correspond to coherent belief sequently\{N’ € o: N"NSNN # 0} C N, whence
modelsinf AV < b that are less informative than Note  S,(SNN)CSNN NN, =8N G, (N). O
that o(b) is an intersection structure with bottor (b) 3Indeed, this requirement seems unnecessary, and even tends to hide
and topM (it is closed under arbitrary intersections). The interesting structure, as it emerges in Theorem 10.




It is not clear to me whether any belief revision opera- Proof. Assume tha, satisfies51-54 and that it is gen-

tor satisfyingR1—RS, or any selection function satisfying erated by some system of spheres ConsiderN ¢
G1-54, can be generated by a system of spheres, or id). It is clear that (7) holds i’V = () [use &1] or if
other words, whether Grove's characterisation result [12]N N M(b) # 0 [use &3]. Assume therefore that” # ()

for belief revision in classical propositional logic can be and V' N M(b) = 0. Then we know, using (5), that
extended (but see Proposition 12). The following resultsS,(N) = N N({S € o: SNN # 0}. Sincec(b) is
should be seen as a first step towards answering this inteeclosed under arbitrary intersections, this means that there

esting open question. isanS € o(b) such thatS,(N) = SNN. As a conse-
Theorem 10. Let &, be a selection function satisfying 9duenceS,(\V) € S andM(b) € S, whence, sincé is
&1-63 and definer, C o(b) ast closed,

N NVeo®): NNS#D=&,(S) S NS M(b) UG, (N) € Clm(M(D)UG,(N)) € S,

s mifé’b’%:@ and if we take the intersection witk(, taking into account
that V' N M(b) = 0 andS,(N) C N [useS1-G3],
Theno, is a system of spheres around (b) and it is the

greatest (finest) such system for whigh(S) C &, (S) Gy(N) €N N Clpyr(M(b) U Gy(N))

for all S € 91, with equality ifS = 0 or S N M(b) # 0. CN NS =GN,
Consequently, there is a system of spheres that generates

S, if and only ifo, generatesS,, i.e., if &, = &,, . which completes the proof. O

Example2. Consider the smallest (or coarsest) system of

Proof. Itis obviou; .thatro satisfiessr1 and027..lt is also spheres around(b): o = {M(b), M}. The correspond-
clear from the definition of, that for allS € 91: ing selection function is given by

6[,(8) - ﬂ{NﬂS NGJO and/\/'ﬂS;é(Z)} (6) SﬂM(b) ImeM(b) 7&

0
60’(8) = { .

Since forS € M, S # 0 and therefores, (S) # 0 [use S if SAM(b) = 0.

61-63), it follows that{SNN: N € g, andSNN #

- : so we find for the corresponding revision operator:
0} # 0, soo, satisfieso3 and is therefore a system of P g P

spheres around\(b). It also follows from (5) and (6) 552) Cls(b— ) if bandy are consistent
that for the associated selection functién,: &,(S) C R(b;v) = . . .
&, (S) forall S € M. Clearly, equality holds i§ = () or " it b andry are inconsistent

if SNM(b) # 0. Now leto be a system of spheres around |n the spirit of Gardenfors’ work [10], we could call this
M(b) such thath(S) - 60(8) forall S € M. Let N/ R(b’ ) a ‘full meet revision'.

be an arbitrary element of and letS € M such that  gyample3. Consider a normal possibility distribution
SNM(b) =0.f N NS # Dthenitfollows from (S)and .. 1, i on the set of maximal coherent belief models
the assumption tha®, (S) € &,(5) € N'NS, whence  np \we assume that it satisfied and that its cut sets are
N € o,. We conclude that C o,. The rest of the proof closed:m, = {m € M: a < n(m)} € Miorall a € K.

is now trivial. This implies in particular that?2 is also satisfied. Define

Corollary 11. A selection functior®, satisfyingg1-&4  the following collection of closed subsetsbf:
can be generated by some system of spheres if and only if
forall S € 91 such thatSNM(b) = () there isanV € o,

suchthatS NN = &,(S). It follows from 71 that for alla € K, 7y D 71, = M(b).

» ) ) o Since moreovet,,, = M, we see that, satisfiesr1 and
Proposition 12 gives a simple necessary condition for a_o Next considet\' € 9. Since it follows from2

revision operator to be generated by a system of spheresh 4t assumes its supremum on every closed\§et 01,
This condition is satisfied for any revision operator satisfy- \ya have for alla € K that A’ N o # 0 if and only if
ing R1-R8 in the case of belief models based on classical , TI(\), whence

propositional logic, as in that case the union of two spheres

o = A{7a: a € K}.

is a sphere (the closure opera€dn, is topological). n{ﬂa; NNmy # 0} = n{ﬂa; a = TI(N)}
Proposition 12. A necessary condition for a selection — [m € M: TI(\) < 7(m)}
function&, that satisfies51-&4 to be generated by some ' -
system of spheres is that for ll € 9n: and taking into account2 and (4),

Gy(N) = N N Clm(M(b) U &p(N)). M 6o, W) =N [{ma: NN # 0}
“Note thato, is closed under arbitrary intersections. ={meN:IIN)=n(m)} = S (N) # 0.




This proves that3 holds, soo,; is a system of spheres
aroundM (b). We find for the corresponding selection op-
erator thats,, = 6.
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Conclusion

| am convinced that the study of belief structures, their
mathematical properties and their mutual relationships,

can help us relate the many belief models that have beenl[9
proposed in the literature.

| am aware that the present

study is far from complete, and that refinements and even
small modifications may be the necessary. One topic

where this may be the case, is belief contraction.

We

have seen that for belief expansion and revision, many
of Gardenfors’ results are valid in a broader context. Al-
though his proofs use the details of the underlying logical 10]
language, | have shown that this is not necessary, and that
simpler and more powerful proofs can be found by using
a few general unifying properties. It turns out, however,
that in Gardenfors’ discussion of contraction crucial steps [11]
are taken which are very specific to classical logic (using
the topological nature of the closu€éy,, for one thing);
and which are hard, if not impossible, to generalise di-
rectly. For one thing, preserving the relationship between
contraction and revision (Levi’'s and Harper’s identities) [12]
becomes problematical. More effort should be invested in
finding out what can said about belief contraction for more

general belief models, what can be preserved in the gene
alisation, and how.
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