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Abstract 
 

In this paper, we investigate the use of assessments of 
conditional previsions for modeling prior information 
on the parameter of a binomial model as a way of 
obtaining non-vacuous posterior previsions via natural 
extension. More specifically, we argue that a useful 
method for obtaining an imprecise prevision for the 
parameter θ of a binomial model, given a sample of 
size n showing r successes, is to assess imprecise 
previsions for θ which are conditional on samples 
having sizes larger than n. Inferences obtained using 
this approach are compared to Walley's proposal for 
learning from a bag of marbles. 
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1   Introduction 
 
Even if the theory of coherent lower previsions (CLP, 
Walley [1991]) is quite appealing for decision-making 
under uncertainty, there are still few published 
applications of this theory, in part because inferences 
obtained using natural extension tend to be 
excessively imprecise from the point of view of the 
practitioner. As was pointed out by Walley [1996b], 
this occurs when the assumptions and prior judgments 
are themselves excessively imprecise. However, one 
of the appealing features of CLP theory is the 
possibility of making inferences and taking rational 
decisions based on few other assumptions than 
coherence. If one still wants to base inferences on 
natural extension, the challenge therefore resides in 
developing, for various statistical models, strategies 
for encoding prior information efficiently, in the sense 
that few assessments of imprecise previsions be 
necessary to obtain useful results. 
 
The purpose of this paper is to propose and illustrate a 
simple method for using natural extension to obtain 
imprecise, but still useful, coherent posterior 
previsions for the parameter of a binomial model from 
a small number of prior judgments. It aims at showing 

the advantages of CLP theory, and in particular of 
natural extension, for the type of problems 
encountered by the practitioner who has to make 
inferences, and eventually take action, based on small 
samples. 
 
Various inference frameworks that have been 
proposed for the binomial model are reviewed and 
discussed in Section 2. In Section 3, we propose a 
different approach, based on a finite number of 
assessments of the conditional expectation of the 
parameter of the binomial model for sample sizes 
larger than the one at hand. These ideas are illustrated 
in Section 4, and compared to the approach for 
learning from a bag of marbles proposed by Walley 
[1996a]. Section 5 contains a general discussion and 
some conclusions. 
 
2   Inference from Binomial Data 
 
Let (Xn) be a sequence of i.i.d. Bernoulli random 
variable that can only assume the values 1 (a success) 
or 0 (a failure). Let θ=P(Xn=1) be the probability of 
observing a success. It can be shown that the 
probability of observing r successes in n trials has a 
binomial distribution f(r,n;θ)=n!/[r!(n-r)!]⋅θ r⋅(1-θ)n-r. 
In an inference setting, one is interested in obtaining 
information on the parameter θ from a finite observed 
sequence x=(xn) containing nr x= ∑  successes. 

 
The Bayesian approach to this problem is to 
summarize all prior information on this parameter by 
a prior distribution b(θ) and to update it, using Bayes' 
rule, to obtain a posterior distribution 
b(θ|r,n)∝f(r,n;θ)⋅b(θ) for the parameter of interest. 
The difficulty lies with the elicitation of the prior 
distribution, especially when there is limited prior and 
sampling information. In this case, different reference 
or non-informative priors have been proposed based 
on different criteria (see Bernardo and Smith [1994] 
for a Bayesian perspective on this problem). Non-
informative priors proposed in the literature have two 
things in common: they are relatively smooth and 
symmetrical, thus leading to inferences that are 



dominated by the effect of the sample, even if the 
prior expectation of θ is precisely ½ in all cases. 
 
The limitations of Bayesian theory for dealing with 
near-ignorance are treated in the literature either (1) 
by introducing new theories for modeling uncertainty 
(including theories of imprecise probabilities), or (2) 
by arguing that for practical purposes these limitations 
can be overcome by a proper sensitivity analysis (see 
for example Berger [1985]). Given these results, and 
with limited comprehension of the fundamental 
limitations of Bayesian theory, the practitioner will 
likely only check the sensitivity of inferences 
obtained through Bayes' rule by trying out different 
priors. In some cases, this leads to results that are 
fundamentally wrong. 
 
For example, in an otherwise excellent paper on an 
application of Dempster-Shafer theory of evidence to 
a hydrological engineering problem, Caselton and 
Luo [1992] illustrate Bayesian decision theory by 
considering the problem of designing a highway 
drainage culvert in a simplified setting where only 
two design flow values are considered, Q1 and Q2, 
where Q1<Q2. They then express the expected utility 
of each decision Qi as a linear function of the 
probability of exceedance θi = P(Q>Qi), modeling 
their near-ignorance on the values of θi by non-
informative priors. They then show that the decision 
is actually not sensitive to the prior, even in the case 
where there is no sampling information, and that the 
smaller culvert should be built. 
 
But by using only symmetrical priors, they assumed 
in all cases that E(θi)=½, which implies that 
E[P(Q>Q1)]=E[P(Q>Q2)] and that consequently 
E[P(Q1<Q≤Q2)]=0. This unreasonable hypothesis 
amounts to supposing that, prior to any observation, 
the decision-maker (DM) feels that flood flows 
between Q1 and Q2 are impossible, which then 
explains why a Bayesian decision analysis concludes 
that, under a wide range of priors, there is no reason 
to pay for additional protection against floods of this 
magnitude. As this example shows, the limitations of 
Bayesian decision analysis for dealing with near-
ignorance have important implications for the 
practitioner, and cannot be avoided by a routine 
sensitivity analysis. 
 
Walley [1996a] proposed an imprecise Dirichlet-
multinomial model (IDM) that is appropriate to 
characterize near-ignorance and which can be used to 
obtain coherent posterior previsions once a random 
sample is observed. In the particular case of the 
binomial model, this model amounts to using for 
inference the lower envelope of the precise previsions 
generated by the family of beta priors 
{b(θ;s,t); t∈[0,1]}, where s is a positive real number 
specified by the DM and b(θ;s,t) is the p.d.f. of the 
beta distribution: 

 
1 1( ) (1 )st s stb θ θ θ− − −∝ −  [1] 

 
We will refer to this model as the imprecise beta-
binomial (IBB) model. It can be shown that the IBB 
model generates vacuous prior previsions for θ, i.e. 
P(θ)=0 and P (θ)=1, as well as the following non-
vacuous posterior previsions: 
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where P(θ|r,n) and P (θ|r,n) correspond respectively 
to the lower and upper previsions of the gamble θ 
conditional on the observation of r successes in n 
Bernoulli trials. The parameter s can therefore be 
interpreted as the weight of the prior information, 
relative to the size of the random sample available for 
inference. In practice, it can be derived from the 
assessment of a single conditional prevision. Note that 
the lower and upper expected values obtained via 
Dempster's rule for the binomial model correspond to 
the particular case s=1 (see Dempster [1968] and 
Dempster and Kong [1987]). 
 
This is a tractable model, which represents adequately 
near-ignorance and leads to non-vacuous coherent 
posterior previsions. However, it still is a parametric 
model: previsions are completely determined by the 
value of the parameter s: by choosing a value of s, the 
DM specifies buying and selling prices for the gamble 
θ, for every possible value of r and n. In the next 
section we discuss how inferences can be obtained by 
assessing conditional previsions for only a few values 
of r and n. 
 
3   Extending a Finite Set of Judgments 
 
One way of loosening the strong parametric 
hypothesis of the IBB model is to assess only a finite 
number of conditional previsions for θ. If a DM may 
not be comfortable with the idea of setting prices for 
all conditional gambles, he may still be ready to set 
prices for some conditional gambles. In this section, 
we discuss the evaluation, via natural extension, of the 
imprecise probability of observing r successes in n 
trials, given a finite number of assessments of 
coherent conditional imprecise prevision. But first, let 
us define what is meant by natural extension from a 
finite set of judgments. 
 
3.1  Natural Extension 
 
This section summarizes material that is found in 
Walley [1991] and Walley [1996b] on natural 
extension from a finite set of judgments. 



Consider a finite set 
�

 of k judgments which can be 
translated into constraints on conditional lower 
previsions, i.e. 

�
={P(Xj |Bj)≥µj, j=1...k} where Xj are 

gambles (i.e. real-valued bounded functions) defined 
on a possibility space Θ and Bj are subsets of Θ. Note 
that constraints on conditional upper previsions can be 
defined in terms of lower previsions since 

( | ) ( | )P X B P X Bµ µ= ⇔ − = −  by definition of an 

upper prevision. Walley [1996b] defines the natural 
extension of P to any conditional lower prevision (eq. 
1, p. 15): 
 

( | ) sup{ : ( 0) s.t. ( ) ( )}E X B B X Sµ µ= ∃ ≥ − ≥ [3] 

 
where λ=(λ1,λ2,...,λk)

T, λ≥0 means max(λj)≥0, 

1( ) ( )k
j j j jjS B Xλ µ== ∑ − , and finally X≥Y means 

X(θ)≥Y(θ) for every θ∈Θ. Note that on the left-hand 
side of this equation, B denotes a subset B of the 
possibility space Θ, whereas on the right-hand side of 
the same equation, B(θ) corresponds to the indicator 
function of the same subset. To simplify the notation, 
a set and its indicator function will always be denoted 
by the same symbol. 
 
According to Walley [1996b], p. 16, when the initial 
judgments avoid sure loss, the natural extensions E 
are the minimal coherent lower previsions that satisfy 
the initial constraints, meaning that E(Xj |Bj)=µj and 
that any other coherent lower prevision P* that satisfy 
the initial constraints must dominate E, i.e. 
P*(X|B)≥E(X|B) for all gambles X and events B. For 
unconditional lower previsions, eq. [3] is equivalent 
to [Walley, 1991, lemma 3.1.3(a)]: 
 

[ ]{ }
0

( ) sup inf ( )E X X S
θ∈Θ≥

= −  [4] 

 
In practice, it is easier to solve eq. [4] than eq. [3]. 
The generalized Bayes rule, presented in the next 
section makes it possible to derive conditional 
previsions from unconditional previsions. 
 
3.2  The Generalized Bayes Rule 
 
When E(B)>0, E(X|B) can also be obtained as the 
supremum of µ such that E(B(X-µ))≥0: 
 

( ){ }( | ) sup : 0E X B E B Xµ µ= ⋅ − ≥    [5] 

 
 Proof. Since E is coherent, by definition 
E(X+Y)≥E(X)+E(Y) and E(δ⋅X)=δ⋅E(X) for every δ>0. 
Choose µ such that E(B(X-µ))≥0. It follows that for 
every δ>0, E(B(X-µ+δ))≥E(B(X-µ+δ))+δ⋅E(B). By 
hypothesis E(B)>0, therefore, E(B(X-ν))>0, where 
ν=µ-δ. By definition of E(B(X-ν)) (eq. [3]), this 

implies that sup{η:( � λ≥0) s.t. B(X-ν)-η≥S(λ)} > 0, 

which in turn implies that ( � λ≥0) s.t. B(X-ν)≥S(λ). 

Since E(X|B) = sup{µ:( � λ≥0) s.t. B(X-µ)≥S(λ)}, it 

follows that E(X|B) ≥ ν=µ-δ. Hence, for any µ such 
that E(B(X-µ)) ≥ 0, E(X|B) ≥ µ-δ  for every δ>0, 
which is equivalent to E(X|B) ≥ sup{µ: E[B(X-µ)]≥0}. 
 
For the reverse inequality, consider that B(X-µ) ≥ S(λ) 
is equivalent to inf[B(X-µ)-S(λ)] ≥ 0. Consequently, 
E(X|B) = sup{µ:( � λ≥0) s.t. inf[B(X-µ)-S(λ)]≥0}. Also, 

( � λ≥0) s.t. inf[B(X-µ)-S(λ)] ≥ 0 implies that 

E[B(X-µ)] = sup{inf[B(X-µ)-S(λ)]≥0} ≥ 0. Hence, 
{µ:( � λ≥0) s.t. inf[B(X-µ)-S(λ)]≥0}⊆{µ:E[B(X-µ)]≥0} 

and E(X|B) ≤ sup{µ:E[B(X-µ)]≥0}.♦ 
 
Equation [5] is known as the generalized Bayes rule 
(GBR). Natural extension and GBR are mainly 
justified in Walley [1991] by considerations of 
coherence between two-stage gambles P(⋅|B) defined 
on different partitions B of Θ (see section 8.1.4 of 
Walley [1991]). Here, we do not require that the sets 
Bj make up one or more partitions of Θ. However, it is 
possible to define for each Bj the partition Bj={Bj,Bj

c} 
and make the additional judgment that 
P(Xj|Bj

c)≥inf{Xj: Bj
c>0}. As this is an implicit 

requirement for separate coherence of P(⋅|Bj), this 
would however lead exactly to the same inferences. 
 
Proof. Adding any judgment of the type 
P(X0|B0)≥inf{X0: B0>0} increases S(λ) to S(λ0,λ)= 
S(λ)+λ0B0[X0-inf{X0: B0>0}]. Since λ0≥0, B0≥0 and 
X0 ≥ inf{X0: B0>0} whenever B0>0, it follows that 
S(λ)≤S(λ0,λ). Consider the values of µ over which the 
supremum is taken in eq. [3]. This set does not change 
when S(λ) is replaced by S(λ0,λ). Indeed, if µ belongs 
to this set, i.e. B(X-µ) dominates S(λ) for some λ≥0, 
then B(X-µ) also dominates S(0,λ) since S(0,λ)=S(λ). 
On the contrary, if for every λ≥0 there exists θ∈Θ 
such that B(θ)(X(θ)-µ)<S(λ)(θ), then, for the same 
value of θ, B(θ)(X(θ)-µ)<S(λ0,λ)(θ) for every λ0>0, 
since S(λ)≤S(λ0,λ) for every λ0>0.♦ 
 
3.3  Inferences Based on a Precise Sampling Model 
 
In an inference setting, one does not observe a subset 
of the parameter space, but an observation x∈Ω 
related to θ by a sampling model. We consider in this 
section the case where the sampling model f(x;θ) is 
precise and the sampling space is discrete, so that 
f(x;θ) corresponds to the probability of observing {x} 
given θ. Define P(X|Θ) as the price one is willing to 
pay to buy or sell the two-stage gamble in which one 
learns which θ has occurred before stating his price 
for the gamble X. This is a function of θ related to 
f(x;θ) by P(X|Θ)(θ)=E f(x;θ) (X), which can be regarded 
as a gamble defined on Θ. In particular, 



P({x}|Θ) = f(x;θ) is the likelihood function of the 
sample x. Considerations of coherence over the 
product-space Θ×Ω suggest that [Walley, 1991, 
section 8.3]: 
 

[ ]( ) ( | )E X E P X= Θ  [6] 

 
Natural extension to conditional lower previsions can 
still be obtained via the GBR by replacing B by {x}: 
E(X|x)=sup{µ: E[{x}(X-µ)]≥0} [Walley, 1991, section 
8.4]. According to eq. [6], when X is constant over Ω, 
E[{x}⋅(X-µ)]=E[P({x}⋅(X-µ)|Θ)]=E[P({x}|Θ)⋅(X-µ)]= 
E[B⋅(X-µ)], where B(θ)=P({x}|Θ) is the likelihood 
function. Therefore, inferences about θ depend only 
on the data through the likelihood function, and 
equations [3] to [5] still hold when the indicator 
functions B and Bj are replaced a discrete likelihood 
function. 
 
3.4  A Set of Judgments for the Binomial Model 
 
Let 

�
={P(aj⋅θ |rj, Nj)≥aj⋅µj, j=1...k} denote a finite set 

of judgments where aj∈{-1,1}, rj, and Nj are 
nonnegative natural numbers such that rj≤Nj, and µj is 
a real number specified by the DM. When aj=1, µj 
corresponds to a lower bound for the lower prevision 
P(θ |rj, Nj). When aj=-1, µj corresponds instead to an 

upper bound for the upper prevision ,( | )j jNP rθ  

since ,( | )j j jNP rθ µ≤  ⇔ ,( | )j j jNP rθ µ− ≥ − . 
 
To simplify numerical comparisons with the IBB 
model in the next section and also insure the 
coherence of 

�
, we will suppose that there exists a 

real number s>0 such that eq. [7] holds for j=1...k: 
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In this case, it can be seen that the IBB model is 
consistent with the judgments in 

�
, in the sense that, 

for the same value of s, every prior in the set 
{b(θ;s,t); t∈[0,1]} generate inferences that do not 
violate any constraint defined in 

�
. This is readily 

seen by comparing [7] and [2]. Since natural 
extension leads to minimal coherent lower previsions, 
the inferences obtained by applying the GBR will be 
less precise or equivalent to those obtained with the 
IBB model. 
 
In practice, we believe that a DM would be more 
inclined to assess conditional previsions for larger 
sample sizes Nj. For example, there should be in most 
practical cases a sample size for which the DM will be 

inclined to accept the observed frequency as his bet 
on the probability of success. This is well illustrated 
by the popularity of the bootstrap [Efron, 1979] for 
statistical simulation purposes, even for moderate 
sample sizes [see for example Friedman and 
Friedman, 1995]. Indeed, from a Bayesian point of 
view, resampling with replacement from an observed 
random sample (xn) amounts to assessing that the 
predictive distribution of a single observation is given 
by the empirical distribution of the sample [Rubin, 
1981]. This is fortunate, as we will show that by 
assessing only a few conditional previsions for larger 
sample sizes, one can obtain non-vacuous posterior 
previsions from an available smaller sample. 
 
Setting Bj=f(rj,Nj;θ), X=Z and B=f(r,n;θ) in equations 
[4] and [5], we obtain the following expressions for 
the natural extension of 

�
 and the GBR: 

 

( ){ }[0,1]0
( ) sup inf , , ,E Z h Z

θ
θ

∈≥
= �  [8] 
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( ){ }( | , ) sup : ( , ; ) 0E X r n E f r n Xµ θ µ = ⋅ − ≥   [9] 

 
3.5 Conditioning on events of probability zero 
 
Prior to using the GBR for computing E(X|r,n), it 
must be checked that E(f(r,n;θ)]>0. Otherwise, 
E(X|r,n) is vacuous, i.e. E(X|r,n) = inf{X: f(r,n;θ)>0] = 
inf X (see section 6.10 of Walley [1991]). 
 
3.6 Solving the GBR Numerically 
 
Solving the GBR numerically can be a challenge, 
especially when lower previsions cannot be easily 
computed [Cozman, 1999b]. In the case where the 
gamble X(θ) is a polynomial, Z(θ)=f(r,n;θ)⋅(X(θ)-µ) 
and h(θ,λ,Z, � ) are also polynomials in θ. Computing 

inf h(θ,λ,Z, � ) is then generally straightforward. 
Evaluating the supremum is more difficult because 
the partial derivatives with respect to each λj do not 
exist everywhere, and in particular they often do not 
exist at the supremum. Techniques developed for 
solving Lagrangian functions, which exhibit similar 
features, can be applied [see ch.8 of Lasdon, 1970]. 
We have used with success the tangential 
approximation, first proposed by Geoffrion [1968]. 
 
4   Numerical Results 
 
In this section we illustrate the proposed approach, 
and compare it to the IBB model. As a first example, 
consider the case where the DM makes only two 

assessments: ( | 3, 5) 1 2P θ ≥  and ( | 3, 5) 2 3P θ ≤ . 
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Figure 1: Posterior previsions for θ, 

given / 2r n=     successes in n trials, based on the 

judgments ( | 3, 5) 1 2P θ ≥  and ( | 3, 5) 2 3P θ ≤  

 
This information can be used to derive, via natural 
extension, useful posterior previsions for smaller 
values of n, or it can be used to estimate the parameter 
s of the IBB model. Solving for s in eq. [2] leads to 
s=1. Figure 1 compares the imprecise probability of 
success obtained with both methods, given a sample 

of size n≤5 in which / 2r n=     successes have been 

observed. 
 
As expected, the IBB model gives more precise 
previsions. However, natural extension of these two 
judgments leads to useful, non-vacuous previsions. 
The results can be used to assess the impacts of using 
the more tractable beta-binomial model, when the 
parameter s has been estimated from only two 
judgments of conditional previsions. 
 
Compared to the IBB model, Figure 1 shows that 
natural extension from a finite number of judgments 
has one important drawback: the imprecision of the 
posterior probability of θ does not necessarily 
decrease with the sample size. Indeed, the difference 
between ,( | )nP rθ  and P(θ |r,n) is larger for n=5 

than for n=4. This cannot happen with the IBB model. 

Indeed, using eq. [2], ,( | )nP rθ −P(θ |r,n)=s/(n+s) 

for the IBB model. Consequently, the imprecision on 
the posterior prevision of θ is strictly decreasing with 
the sample size. In fact, coherent lower previsions in 
general are subject to dilation: it is often possible to 
choose a gamble X and a partition B={B1,B2,...,Bk} for 
which the posterior previsions are more imprecise 
than the prior previsions, whatever Bj occurs (see 
Wasserman and Seidenfeld [1996] for an illustration 
of this phenomenon for the IDM model). 
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Figure 2: Posterior previsions for θ, given / 2r n=     

successes in n trials, based on the judgments 

{ }( | ,5) 1 2; 3 5P r rθ ≥ ≤ ≤  and 

{ }( | ,5) 2 3; 3P r rθ ≤ ≤  

 
In practice, the fact that the imprecision of posterior 
previsions increases with the sample size is generally 
an indication that the constraints used to derive the 
previsions via natural extension should be revisited. It 
is often possible for the DM to add some constraints 
reflecting prior beliefs that he had not taken the time 
to assess previously. 
 
In this particular case, there are some judgments that 
should be easy to make for the DM. Indeed, if a DM 
makes the judgment P(θ|r0,N0)≥µ0, meaning that he is 
ready to pay at least µ0 for the gamble θ after having 
observed r0 successes in N0 trials, he should be ready 
in most cases to pay at least the same amount if he 
observes more than r0 successes in the same number 
of trials. Thus, the DM can generally replace the 
single constraint P(θ|r0,N0)≥µ0 by the set of judgments 
{P(θ|r,N0)≥µ0; r0≤r≤N0}. Similarly, after making the 

judgment 0 0 )( | ,P r Nθ ≤µ0, a DM should generally be 

inclined to formulate the set of judgments 

{ 0 )( | ,P r Nθ ≤µ0; 0≤r≤r0}. In the previous example, 

by accepting this line of reasoning, the DM would add 
two judgments of lower previsions, and three 
judgments of upper previsions. 
 
As shown by Figure 2, this leads to more precise 
posterior previsions (we have observed that the effect 
of adding these constraints becomes more important 
as N0 increases). In particular, the upper prevision is 
now equal to the value obtained with the IBB model 
for r≥3. Also, the difference between the bounds of 
both models is generally larger for the lower prevision 
than for the upper prevision. Could this be caused by 
the fact that four judgments of upper previsions are 
made compared to three judgments of lower 
previsions? 



To investigate this effect further, we computed 
E(θ|1,2) and ( | 1, 2)E θ  based on the set of judgments 

{P(θ|r,5)≥r0/6; r≥r0} and { )( | , 5P rθ ≤(r0+1)/6; r≤r0}, 

for values of r0 between 0 and 5. Note that the case 
studied previously corresponds to r0=3, and that the 
total number of judgments is always equal to seven. 
However, the number of judgments of upper 
previsions increases with r0. 
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Figure 3: Posterior previsions for θ, given one success 

in two trials, based on the judgments 

{ }0 0( | ,5) / 6;P r r r rθ ≥ ≥  and 

{ }0 0( | ,5) ( 1) 6;P r r r rθ ≤ + ≤  

 
Figure 3 confirms that the lower prevision is closer to 
zero when the number of judgments of lower 
previsions decreases (i.e. with increasing r0), and that 
the upper prevision is closer to one when the number 
of judgments of lower previsions increases (i.e. with 
decreasing r0). Furthermore, it can be seen that the 
degree of imprecision, measured by the difference 
between the upper and lower prevision, increases as 
the ratio r0/N0 approaches ½. This means that an 
assessment of how one would react if he were to 
observe either only successes or only failures is 
somewhat more valuable that an assessment of how 
one would react if he were to observe an equal 
number of successes and failures.  
 
5   Discussion and Conclusions 
 
The theory of coherent lower previsions appears to be 
an adequate model for uncertainty in a wide range of 
applications [Walley, 2000]. One of the apparent 
drawbacks of the model is the fact that natural 
extension, which is at the heart of this theory often 
yields inferences that are too uninformative to be 
useful. In practice, there are mainly three ways of 
dealing with this problem: (1) use a different rule for 
deriving posterior previsions, which sacrifices 
coherence for some other less stringent consistency 
criteria [Walley and de Cooman, 1999], (2) use a set 
of probability measures as the basic model for 

uncertainty [Cozman, 1999a] or as a useful hypothesis 
for obtaining more precise results [Walley, 1996a], or 
(3) directly assess conditional probabilities. In this 
paper, we investigated this third approach for the 
binomial model. 
 
The ability to evaluate the implications of a finite 
number of imprecise judgments is a significant 
practical advantage of CLP theory over competing 
models of uncertainty. However, in practice, we need 
to find guidelines as to which types of conditional 
previsions are easier to assess for the decision-maker 
and also lead to useful inferences. 
 
When the objective is to make inferences on the 
parameter of a statistical model based on a small 
random sample, we showed that a promising approach 
is to assess conditional previsions for larger sample 
sizes, both because (1) it seems possible to actually 
obtain these types of assessments from a decision-
maker, and (2) it leads to inferences which are precise 
enough to be useful. 
 
A comparison with the imprecise beta-binomial model 
proposed by Walley [1996a] showed that the IBB 
model can lead to much more precise inferences that 
what can be obtained from natural extension of the 
few judgments of conditional previsions used to 
estimate the parameter s of the model.  
 
CLP theory should turn out to be useful for the 
practitioner, for it is not unusual in engineering, and 
in particular in environmental engineering, to base 
important decisions on limited sampling information 
from different sources and on practical experience 
[see Bernier et al., 2000]. However, we feel that the 
practitioner will apply the theory only (1) if there are 
guidelines for common statistical models, (2) if robust 
numerical methods available and (3) if there are clear 
practical advantages over competing models, such as 
possibility theory and the robust Bayesian theory. 
 
While the shortcomings of rules for defining 
conditional possibility [Walley and de Cooman, 1999] 
may convince the practitioner of using a more general 
model, we find that it is much more difficult to argue 
that CLP theory has practical advantages over robust 
Bayesian theory. One way of doing that might be to 
show with realistic examples that the tools of CLP 
theory (mainly natural extension and the generalized 
Bayes rule) can be used to obtain useful inferences 
from a small number of hypotheses, which the 
practitioner can more easily assess and defend. We 
are investigating further the practical merit of the 
ideas discussed in the present paper [Fortin et al., 
2001], and should present shortly an application to the 
hydrological engineering problem proposed by 
Caselton and Luo [1992]. 
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